Extended probability trees for probabilistic graphical models

被引:0
|
作者
机构
[1] Cano, Andrès
[2] Gómez-Olmedo, Manuel
[3] Moral, Serafín
[4] Pèrez-Ariza, Cora B.
来源
| 1600年 / Springer Verlag卷 / 8754期
关键词
723.4 Artificial Intelligence - 751.5 Speech - 821 Agricultural Equipment and Methods; Vegetation and Pest Control - 921 Mathematics - 922.1 Probability Theory;
D O I
10.1007/978-3-319-11433-0_8
中图分类号
学科分类号
摘要
This paper proposes a flexible framework to work with probabilistic potentials in Probabilistic Graphical Models. The so-called Extended Probability Trees allow the representation of multiplicative and additive factorisations within the structure, along with context-specific independencies, with the aim of providing a way of representing and managing complex distributions. This work gives the details of the structure and develops the basic operations on potentials necessary to perform inference. The three basic operations, namely restriction, combination and marginalisation, are defined so they can take advantage of the defined factorisations within the structure, following a lazy methodology. © Springer International Publishing Switzerland 2014.
引用
收藏
相关论文
共 50 条
  • [41] Probabilistic graphical models in energy systems: A review
    Li, Tingting
    Zhao, Yang
    Yan, Ke
    Zhou, Kai
    Zhang, Chaobo
    Zhang, Xuejun
    BUILDING SIMULATION, 2022, 15 (05) : 699 - 728
  • [42] Probabilistic graphical models for genetic association studies
    Mourad, Raphael
    Sinoquet, Christine
    Leray, Philippe
    BRIEFINGS IN BIOINFORMATICS, 2012, 13 (01) : 20 - 33
  • [43] PROBABILISTIC GRAPHICAL MODELS FOR HUMAN MOTION TRACKING
    Gomez, Jose I.
    Marin-Jimenez, M. J.
    Perez de la Blanca, N.
    2009 10TH INTERNATIONAL WORKSHOP ON IMAGE ANALYSIS FOR MULTIMEDIA INTERACTIVE SERVICES, 2009, : 145 - +
  • [44] Simulation of graphical models for multiagent probabilistic inference
    Xiang, Y
    An, X
    Cercone, N
    SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL, 2003, 79 (10): : 545 - 567
  • [45] MODELLING STRUCTURED DATA WITH PROBABILISTIC GRAPHICAL MODELS
    Forbes, F.
    STATISTICS FOR ASTROPHYSICS: CLUSTERING AND CLASSIFICATION, 2016, 77 : 195 - 219
  • [46] Qualified probabilistic predictions using graphical models
    Luo, ZY
    Gammerman, A
    SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, PROCEEDINGS, 2005, 3571 : 111 - 122
  • [47] Probabilistic Graphical Models with Neural Networks in InferPy
    Cabanas, Rafael
    Cozar, Javier
    Salmeron, Antonio
    Masegosa, Andres R.
    INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 138, 2020, 138 : 601 - 604
  • [48] Lifted Probabilistic Inference for Asymmetric Graphical Models
    Van den Broeck, Guy
    Niepert, Mathias
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 3599 - 3605
  • [49] A survey on the representation theory of probabilistic graphical models
    Liu J.-W.
    Li H.-E.
    Zhou J.-J.
    Luo X.-L.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2016, 44 (05): : 1219 - 1226
  • [50] Hedging as Reward Augmentation in Probabilistic Graphical Models
    Bhattacharjya, Debarun
    Marinescu, Radu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,