Soil burial degradation of chemically compatibilized poly(butylene adipate-co-terephthalate)/thermoplastic starch/poly(ε-caprolactone)/ cellulose biocomposites

被引:0
|
作者
Hejna, Aleksander [1 ,2 ]
Barczewski, Mateusz [1 ]
Kosmela, Paulina [2 ]
Mysiukiewicz, Olga [1 ]
Saeb, Mohammad Reza [3 ]
机构
[1] Poznan Univ Tech, Inst Mat Technol, Piotrowo 3, PL-61138 Poznan, Poland
[2] Gdansk Univ Technol, Dept Polymer Technol, Narutowicza 11-12, PL-80233 Gdansk, Poland
[3] Med Univ Gdansk, Dept Pharmaceut Chem, J Hallera 107, PL-80416 Gdansk, Poland
关键词
Biodegradable polymers; Soil burial biodegradation; Thermoplastic starch; POLY-LACTIC-ACID; BIODEGRADATION BEHAVIOR; MECHANICAL-PROPERTIES; MATER-BI; TERNARY COMPOSITES; WATER-ABSORPTION; MATER-BI(R); STARCH; PLA; FILLER;
D O I
10.1016/j.ijbiomac.2024.136801
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Developing bio-blends and biocomposites has become a widespread strategy to combat plastic pollution in line with sustainability principles and decarbonization necessities. Although chemically modified ternary and quaternary biocomposites are developing rapidly because of their broader processing and performance windows than single matrix and binary counterparts, a few have been reported about their biodegradation. Herein, diisocyanates-based chemically modified ternary biocomposites based on poly(butylene adipate-co-tere- phthalate), thermoplastic starch (TPS), poly(epsilon-caprolactone) (PCL), and cellulose (Mater-Bi/PCL/cellulose) are prepared and undergone soil burial biodegradation providing a broader perspective on biodegradation of complicated systems. The mass gain of sunflower sprouts, weight retention, and the appearance of biocomposites are studied and discussed in the course of biodegradation. The unfilled Mater-Bi/PCL bio-blends presented moderate mass loss over 12 weeks, attributed to the presence of TPS in the Mater-Bi phase. The PCL addition hindered TPS decomposition and featured a noticeably lower degradation rate compared to previous reports. A significant increase in the b* parameter (position on the blue-yellow axis in the CIELAB color space), along with the yellowness and whiteness indices, was observed. Prior to soil burial, roughness differences were negligible. Still, they significantly increased over time due to the higher hydrophilicity of unfilled Mater-Bi/PCL and biocomposite containing unmodified filler.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Thermo stabilisation of poly (butylene adipate-co-terephthalate)
    Chaves, Rodrigo Paulino
    Macedo Fechine, Guilhermino Jose
    POLIMEROS-CIENCIA E TECNOLOGIA, 2016, 26 (02): : 102 - 105
  • [42] Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly(lactic acid) and poly(butylene adipate-co-terephthalate)
    Ren, Jie
    Fu, Hongye
    Ren, Tianbin
    Yuan, Weizhong
    CARBOHYDRATE POLYMERS, 2009, 77 (03) : 576 - 582
  • [43] Controlling grafting density of compatibilizer to enhance performance of thermoplastic Starch/Poly(butylene adipate-co-terephthalate) blends
    Kim, Sung Kyu
    Lee, Junhyuk
    Son, Dasom
    Kang, DongHo
    Jung, Hyun Wook
    Shim, Jin Kie
    POLYMER, 2024, 307
  • [44] Superior ductile poly(glycolic acid)/poly(butylene adipate-co-terephthalate) blends compatibilized by triphenyl phosphite
    Li, Chenyang
    Liu, Kuichen
    Li, Chun
    Meng, Xin
    Gong, Weiguang
    Wen, Wei
    Chen, Shiyuan
    Xin, Zhong
    MATERIALS TODAY COMMUNICATIONS, 2023, 36
  • [45] Synthesis of Bio-Nanomagnetite Using Poly(butylene adipate) and Poly(butylene adipate-co-terephthalate)
    F. Hosseini
    Z. Es’haghi
    Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30 : 4361 - 4371
  • [46] Property improvement of a thermoplastic starch/poly(butylene adipate-co-terephthalate) blown film by the addition of sodium nitrite
    Tuntiworadet, Thanatcha
    Yoksan, Rangrong
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 242
  • [47] Reactive Compatibilization of Polylactide, Thermoplastic Starch and Poly(butylene adipate-co-terephthalate) Biodegradable Ternary Blend Films
    Phetwarotai, Worasak
    Aht-Ong, Duangdao
    ECO-MATERIALS PROCESSING AND DESIGN XII, 2011, 695 : 178 - +
  • [48] Characterization of layered silicate-reinforced blends of thermoplastic starch (TPS) and poly(butylene adipate-co-terephthalate)
    Lendvai, Laszlo
    Apostolov, Anton
    Karger-Kocsis, Jozsef
    CARBOHYDRATE POLYMERS, 2017, 173 : 566 - 572
  • [49] Synthesis of Bio-Nanomagnetite Using Poly(butylene adipate) and Poly(butylene adipate-co-terephthalate)
    Hosseini, F.
    Es'haghi, Z.
    JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2020, 30 (11) : 4361 - 4371
  • [50] Microwave Attenuation of Graphene Modified Thermoplastic Poly(Butylene adipate-co-terephthalate) Nanocomposites
    Kashi, Sima
    Hadigheh, S. Ali
    Varley, Russell
    POLYMERS, 2018, 10 (06)