Neural network modeling for paper property predictions

被引:0
|
作者
机构
来源
| 2001年 / Fadum Enterprises Inc.卷 / 21期
关键词
Computer software - Data acquisition - Headboxes - Online systems - Opacity - Paper and pulp mills - Porosity;
D O I
暂无
中图分类号
学科分类号
摘要
The implementation of neural network software package by Appleton Coated Locks Mills is presented to solve process problems. The six months of data from the mill's process historian is used by neural network software to train the models. The trained models produces a sensitivity rating and lists all the variable in order of the impact on the property. Several on-line models are developed to predict outputs for diagnostic activities. It is shown that neural network can only make predictions within the trained data range for each input variable. The formation model shows that the headbox temperature is out of range and white water temperature is low.
引用
收藏
相关论文
共 50 条
  • [41] Modeling of Breakdown Voltage Behaviour of Leatherite Paper in the presence of Void using Artificial Neural Network
    Ghosh, S.
    Mohanty, S.
    2007 IEEE INTERNATIONAL CONFERENCE ON SOLID DIELECTRICS, VOLS 1 AND 2, 2007, : 94 - 97
  • [42] PROPERTY PREDICTIONS
    DAUBERT, TE
    HYDROCARBON PROCESSING, 1980, 60 (03): : 107 - 112
  • [43] Construction of Neural-Network Structure–Condition–Property Relationships: Modeling of Physicochemical Properties of Hydrocarbons
    N. M. Gal'bershtam
    I. I. Baskin
    V. A. Palyulin
    N. S. Zefirov
    Doklady Chemistry, 2002, 384 : 140 - 143
  • [44] Impact of geostatistical nonstationarity on convolutional neural network predictions
    Liu, Lei
    Prodanovic, Masa
    Pyrcz, Michael J.
    COMPUTATIONAL GEOSCIENCES, 2023, 27 (01) : 35 - 44
  • [45] Power signal predictions by using modified neural network
    Lee, H. C.
    Chen, Y. J.
    Chang, C. Y.
    Chuang, S. J.
    Huang, H. C.
    Hwang, R. C.
    2006 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-6, PROCEEDINGS, 2006, : 1320 - 1324
  • [46] Refining neural network predictions using background knowledge
    Daniele, Alessandro
    van Krieken, Emile
    Serafini, Luciano
    van Harmelen, Frank
    MACHINE LEARNING, 2023, 112 (09) : 3293 - 3331
  • [47] NEURAL NETWORK PREDICTIONS OF ENERGY-TRANSFER IN MACROMOLECULES
    SUMPTER, BG
    GETINO, C
    NOID, DW
    JOURNAL OF PHYSICAL CHEMISTRY, 1992, 96 (06): : 2761 - 2767
  • [48] Quantifying uncertainty in predictions using a Bayesian neural network
    Goh, ATC
    Chua, CG
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 292 - 294
  • [49] Nuclear mass predictions based on a convolutional neural network
    Lu, Yanhua
    Shang, Tianshuai
    Du, Pengxiang
    Li, Jian
    Liang, Haozhao
    Niu, Zhongming
    PHYSICAL REVIEW C, 2025, 111 (01)
  • [50] Impact wave predictions by a Fuzzy ARTMAP neural network
    Oliveira, P. B. A.
    Lotufo, A. D. P.
    Lopes, M. L. M.
    Maciel, G. F.
    OCEAN ENGINEERING, 2020, 202