Fractional Derivative Model for Dynamic Viscoelasticity of Asphalt Mixtures

被引:0
|
作者
Yan, Ke-Zhen [1 ]
Yang, Sheng-Feng [1 ]
Li, Guo-Kai [1 ]
Zhou, Hua [1 ]
Pan, Qin-Xue [2 ]
Lyu, Song-Tao [2 ]
机构
[1] College of Civil Engineering, Hunan University, Changsha,410082, China
[2] Key Laboratory of Highway Engineering of Education, Changsha University of Science & Technology, Changsha,410004, China
关键词
D O I
暂无
中图分类号
学科分类号
摘要
32
引用
收藏
页码:12 / 22
相关论文
共 50 条
  • [41] Using mix design information for modelling of fundamental viscoelasticity of asphalt mixtures
    Zhang, Runhua
    Sias, Jo E.
    Dave, Eshan, V
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 329
  • [42] Sensitivity analysis of a new dynamic modulus (|E*|) model for asphalt mixtures
    Abu Abdo, Ahmad M.
    ROAD MATERIALS AND PAVEMENT DESIGN, 2012, 13 (03) : 549 - 555
  • [43] Research on dynamic modulus of asphalt mixtures
    Shandong Communication Science Research Institute, Jinnan 250031, China
    Jianzhu Cailiao Xuebao, 2008, 6 (657-661):
  • [44] Viscoelasticity of PPA/SBS/SBR Composite Modified Asphalt and Asphalt Mixtures Under Pressure Aging Conditions
    Yu, Zongjie
    Ling, Xinpeng
    Fan, Ze
    Zhou, Yueming
    Ma, Zhu
    POLYMERS, 2025, 17 (05)
  • [45] Two compartmental fractional derivative model with general fractional derivative
    Vesna Miskovic-Stankovic
    Marko Janev
    Teodor M. Atanackovic
    Journal of Pharmacokinetics and Pharmacodynamics, 2023, 50 : 79 - 87
  • [46] Two compartmental fractional derivative model with general fractional derivative
    Miskovic-Stankovic, Vesna
    Janev, Marko
    Atanackovic, Teodor M.
    JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2023, 50 (02) : 79 - 87
  • [47] Fractional Derivative Models for Ultrasonic Characterization of Polymer and Breast Tissue Viscoelasticity
    Coussot, Cecile
    Kalyanam, Sureshkumar
    Yapp, Rebecca
    Insana, Michael F.
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2009, 56 (04) : 715 - 726
  • [48] Unified fractional derivative models of magneto-thermo-viscoelasticity theory
    Ezzat, M. A.
    El-Bary, A. A.
    ARCHIVES OF MECHANICS, 2016, 68 (04): : 285 - 308
  • [49] Dynamic mechanical properties of agarose gels modeled by a fractional derivative model
    Chen, QS
    Suki, B
    An, KN
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2004, 126 (05): : 666 - 671
  • [50] Weak solvability of a fractional Voigt viscoelasticity model
    Zvyagin, V. G.
    Orlov, V. P.
    DOKLADY MATHEMATICS, 2017, 96 (02) : 491 - 493