共 44 条
- [11] Hong J., Ohtsuki T., A state classification method based on space-time signal processing using SVM for wireless monitoring systems, Proc. of the 2011 IEEE 22nd Int'l Symp. on Personal Indoor and Mobile Radio Communications (PIMRC), pp. 2229-2233, (2011)
- [12] Stiefmeier T., Roggen D., Ogris G., Lukowicz P., Troster G., Wearable activity tracking in car manufacturing, IEEE Pervasive Computing, 7, 2, pp. 42-50, (2008)
- [13] Kautz T., Groh B.H., Hannink J., Jensen U., Strubberg H., Eskofier B.M., Activity recognition in beach volleyball using a deep convolutional neural network, Data Mining and Knowledge Discovery, 31, 6, pp. 1678-1705, (2017)
- [14] Parkka J., Ermes M., Korpipaa P., Emantyjarvi J., Peltola J., Korhonen I., Activity classification using realistic data from wearable sensors, IEEE Trans. on Information Technology in Biomedicine, 10, 1, pp. 119-128, (2006)
- [15] Shoaib M., Bosch S., Incel O.D., Scholten H., Havinga P., Complex human activity recognition using smartphone and wrist-worn motion sensors, Sensors, 16, 4, (2016)
- [16] Chen Y.P., Yang J.Y., Liou S.N., Lee G.Y., Wang J.S., Online classifier construction algorithm for human activity detection using a tri-axial accelerometer, Applied Mathematics and Computation, 205, 2, pp. 849-860, (2008)
- [17] Figo D., Diniz P.C., Ferreira D.R., Cardoso J., Preprocessing techniques for context recognition from accelerometer data, Personal and Ubiquitous Computing, 14, 7, pp. 645-662, (2010)
- [18] He Z., Jin L., Activity recognition from acceleration data based on discrete consine transform and SVM, Proc. of the IEEE Int'l Conf. on Systems, Man and Cybernetics, pp. 5041-5044, (2009)
- [19] Zeng M., Nguyen L.T., Yu B., Et al., Convolutional neural networks for human activity recognition using mobile sensors, Proc. of the 6th Int'l Conf. on Mobile Computing, Applications and Services (MobiCASE), pp. 197-205, (2014)
- [20] Kuang X.H., He J., Hu Z.H., Zhou Y., Comparison of deep feature learning methods for human activity recognition, Application Reaearch of Computers, 35, 9, (2017)