Nonstabilizerness via Perfect Pauli Sampling of Matrix Product States

被引:21
|
作者
Lami G. [1 ]
Collura M. [1 ,2 ]
机构
[1] International School for Advanced Studies (SISSA), Trieste
[2] INFN Sezione di Trieste, Trieste
关键词
Wave functions;
D O I
10.1103/PhysRevLett.131.180401
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a novel approach to evaluate the nonstabilizerness of an N-qubits matrix product state (MPS) with bond dimension χ. In particular, we consider the recently introduced stabilizer Rényi entropies (SREs). We show that the exponentially hard evaluation of the SREs can be achieved by means of a simple perfect sampling of the many-body wave function over the Pauli string configurations. The sampling is achieved with a novel MPS technique, which enables us to compute each sample in an efficient way with a computational cost O(Nχ3). We benchmark our method over randomly generated magic states, as well as in the ground-state of the quantum Ising chain. Exploiting the extremely favorable scaling, we easily have access to the nonequilibrium dynamics of the SREs after a quantum quench. © 2023 American Physical Society.
引用
收藏
相关论文
共 50 条
  • [21] An interruptible algorithm for perfect sampling via Markov chains
    Fill, JA
    ANNALS OF APPLIED PROBABILITY, 1998, 8 (01): : 131 - 162
  • [22] THE REPLACEABILITY OF SAMPLING MATRIX FOR MULTIDIMENSIONAL PERFECT RECONSTRUCTION FILTER BANKS
    Yang, Bo
    Jing, Zhongliang
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2008, 6 (05) : 665 - 674
  • [23] Higher structures in matrix product states
    Ohyama, Shuhei
    Ryu, Shinsei
    PHYSICAL REVIEW B, 2024, 109 (11)
  • [24] Matrix product states with backflow correlations
    Lami, Guglielmo
    Carleo, Giuseppe
    Collura, Mario
    PHYSICAL REVIEW B, 2022, 106 (08)
  • [25] Entanglement classification with matrix product states
    Sanz, M.
    Egusquiza, I. L.
    Di Candia, R.
    Saberi, H.
    Lamata, L.
    Solano, E.
    SCIENTIFIC REPORTS, 2016, 6
  • [26] LECTURES ON MATRIX PRODUCT REPRESENTATION OF STATES
    Karimipour, Vahid
    Asoudeh, M.
    FRONTIERS IN QUANTUM INFORMATION RESEARCH: DECOHERENCE, ENTANGLEMENT, ENTROPY, MPS AND DMRG, 2012, 4 : 117 - 149
  • [27] Entanglement classification with matrix product states
    M. Sanz
    I. L. Egusquiza
    R. Di Candia
    H. Saberi
    L. Lamata
    E. Solano
    Scientific Reports, 6
  • [28] Matrix Product States with Large Sites
    Larsson, Henrik R.
    Zhai, Huanchen
    Gunst, Klaas
    Chan, Garnet Kin-Lic
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (02) : 749 - 762
  • [29] Calculus of continuous matrix product states
    Haegeman, Jutho
    Cirac, J. Ignacio
    Osborne, Tobias J.
    Verstraete, Frank
    PHYSICAL REVIEW B, 2013, 88 (08):
  • [30] Typicality in random matrix product states
    Garnerone, Silvano
    de Oliveira, Thiago R.
    Zanardi, Paolo
    PHYSICAL REVIEW A, 2010, 81 (03):