Electric Load Forecasting by Hybrid Self-Recurrent Support Vector Regression Model with Variational Mode Decomposition and Improved Cuckoo Search algorithm

被引:0
|
作者
Zhang Z. [1 ]
Hong W.-C. [1 ]
Li J. [2 ]
机构
[1] School of Computer Science and Technology, Jiangsu Normal University, Xuzhou
[2] Department of Medical Ultrasonics, Xuzhou No.1 Peoples Hospital, Xuzhou
关键词
cuckoo search algorithm; out-bound-back mechanism; self-recurrent mechanism; Support vector regression; tent chaotic mapping function; variational mode decomposition;
D O I
10.1109/aCCESS.2020.2966712
中图分类号
学科分类号
摘要
accurate electric load forecasting is critical not only in preventing wasting electricity production but also in facilitating the reasonable integration of clean energy resources. Hybridizing the variational mode decomposition (VMD) method, the chaotic mapping mechanism, and improved meta-heuristic algorithm with the support vector regression (SVR) model is crucial to preventing the premature problem and providing satisfactory forecasting accuracy. To solve the boundary handling problem of the cuckoo search (CS) algorithm in the cuckoo birds' searching processes, this investigation proposes a simple method, called the out-bound-back mechanism, to help those out-bounded cuckoo birds return to their previous (the most recent iteration) optimal location. The proposed self-recurrent (SR) mechanism, inspired from the combination of Jordan's and Elman's recurrent neural networks, is used to collect comprehensive and useful information from the training and testing data. Therefore, the self-recurrent mechanism is hybridized with the SVR-based model. Ultimately, this investigation presents the VMD-SR-SVRCBCS model, by hybridizing the VMD method, the SVR model with the self-recurrent mechanism, the Tent chaotic mapping function, the out-bound-back mechanism, and the cuckoo search algorithm. Two real-world datasets are used to demonstrate that the proposed model has greater forecasting accuracy than other models. © 2013 IEEE.
引用
收藏
页码:14642 / 14658
页数:16
相关论文
共 50 条
  • [11] Application of variational mode decomposition and chaotic grey wolf optimizer with support vector regression for forecasting electric loads
    Zhang, Zichen
    Hong, Wei -Chiang
    KNOWLEDGE-BASED SYSTEMS, 2021, 228
  • [12] Energy Load Forecasting Using Empirical Mode Decomposition and Support Vector Regression
    Ghelardoni, Luca
    Ghio, Alessandro
    Anguita, Davide
    IEEE TRANSACTIONS ON SMART GRID, 2013, 4 (01) : 549 - 556
  • [13] Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model
    Hong, Wei-Chiang
    ENERGY CONVERSION AND MANAGEMENT, 2009, 50 (01) : 105 - 117
  • [14] An incremental electric load forecasting model based on support vector regression
    Yang, YouLong
    Che, JinXing
    Li, YanYing
    Zhao, YanJun
    Zhu, SuLing
    ENERGY, 2016, 113 : 796 - 808
  • [15] Two-stage variational mode decomposition and support vector regression for streamflow forecasting
    Zuo, Ganggang
    Luo, Jungang
    Wang, Ni
    Lian, Yani
    He, Xinxin
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2020, 24 (11) : 5491 - 5518
  • [16] The potentiality of support vector regression with immune algorithm for regional electric load forecasting
    Hong, Wei-Chiang
    Lee, Shao-Lun
    Lai, Chien-Yuan
    Wu, Yi-Hsien
    Wang, Kuo-Liang
    2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6, 2007, : 2475 - +
  • [17] Seasonal Support vector regression with chaotic genetic algorithm in electric load forecasting
    Hong, Wei-Chiang
    Dong, Yucheng
    Chen, Li-Yueh
    Wei, Shih-Yung
    2012 SIXTH INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTING (ICGEC), 2012, : 124 - 127
  • [18] Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm
    Hong, Wei-Chiang
    ENERGY, 2011, 36 (09) : 5568 - 5578
  • [19] Electric load forecasting by complete ensemble empirical mode decomposition adaptive noise and support vector regression with quantum-based dragonfly algorithm
    Zhang, Zichen
    Hong, Wei-Chiang
    NONLINEAR DYNAMICS, 2019, 98 (02) : 1107 - 1136
  • [20] Electric load forecasting by complete ensemble empirical mode decomposition adaptive noise and support vector regression with quantum-based dragonfly algorithm
    Zichen Zhang
    Wei-Chiang Hong
    Nonlinear Dynamics, 2019, 98 : 1107 - 1136