Structurally ordered PtFe intermetallic embedded in N-doped carbon as a highly active and durable electrocatalyst for oxygen reduction reaction

被引:0
|
作者
Zhou S. [1 ]
Liao W. [1 ]
Wang Z. [1 ]
Pan H. [1 ]
Liu F. [1 ]
Lin Q. [1 ]
Wang Q. [1 ]
机构
[1] Guizhou University Key Laboratory of Green Chemical and Clean Energy Technology, Guizhou University Engineering Research Center of Efficient Utilization for Industrial Waste, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025
基金
中国国家自然科学基金;
关键词
Alloy; Electrocatalyst; Fuel cells; Oxygen reduction reaction; Stability;
D O I
10.1016/j.ijhydene.2021.10.091
中图分类号
学科分类号
摘要
The structurally ordered PtM with surface coating layers strategy has drawn increasing attention. In this work, we synthesize a structurally ordered PtFe@NC-X-PDA catalyst modified with nitrogen-doped carbon coating layers by confined space annealing strategy. Compared with the current commercial Pt/C catalyst, the structurally ordered PtFe@NC-X-PDA catalyst shows better catalytic activity and stability. Especially, the mass activity and specific activity of the synthesized PtFe@NC-0.06-PDA sample with the optimized poly-dopamine feeding mass content (0.06 g) exhibit 9.95 and 11.53 times higher than that of commercial Pt/C catalyst. In addition, after 20,000 CV cycles, the PtFe@NC-0.06-PDA sample achieves the minimum activity loss (7%). The PtFe alloy catalyst with the different thickness NC shell (PtFe@NC-X-PDA) possesses the enhanced ORR activity and stability owing to the protection of nitrogen carbon shell (NC) and the strong electronic interaction of the ordered PtFe NPs. The improved ORR activity and stability of the structurally ordered PtFe@NC-X-PDA catalyst provide a promising direction for the development of fuel cells. © 2021 Hydrogen Energy Publications LLC
引用
收藏
页码:1256 / 1266
页数:10
相关论文
共 50 条
  • [31] CoFe alloy embedded in N-doped carbon nanotubes derived from triamterene as a highly efficient and durable electrocatalyst beyond commercial Pt/C for oxygen reduction
    Meng, Hong-Ling
    Lin, Shi-Yi
    Cao, Ying
    Wang, Ai-Jun
    Zhang, Lu
    Feng, Jiu-Ju
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 604 : 856 - 865
  • [32] Nanoporous PtFe alloys as highly active and durable electrocatalysts for oxygen reduction reaction
    Duan, Huimei
    Hao, Qin
    Xu, Caixia
    JOURNAL OF POWER SOURCES, 2014, 269 : 589 - 596
  • [33] Nanoporous PdFe alloy as highly active and durable electrocatalyst for oxygen reduction reaction
    Han, Baohai
    Xu, Caixia
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (32) : 18247 - 18255
  • [34] Lithium manganese phosphate-carbon composite as a highly active and durable electrocatalyst for oxygen reduction reaction
    Lee, Myeong Jae
    Kang, Jin Soo
    Ahn, Docheon
    Chung, Dong Young
    Park, Subin
    Son, Yoon Jun
    Yoo, Ji Mun
    Shin, Heejong
    Kang, Yun Sik
    Sung, Nark-Eon
    Lee, Kug-Seung
    Sung, Yung-Eun
    ELECTROCHIMICA ACTA, 2017, 245 : 211 - 218
  • [35] Highly dispersed iron nitride nanoparticles embedded in N doped carbon as a high performance electrocatalyst for oxygen reduction reaction
    Li, Jie
    Yu, Fan
    Wang, Mengran
    Lai, Yanqing
    Wang, Hao
    Lei, Xiaoke
    Fang, Jing
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (05) : 2996 - 3005
  • [36] In situ palladium/nitrogen-doped ordered mesoporous carbon hybrids as highly active and durable electrocatalysts for oxygen reduction reaction
    Hu Guo
    Daheng Wen
    Tao Wang
    Xiaoli Fan
    Li Song
    Hao Gong
    Wei Xia
    Bin Gao
    Linghui Li
    Jianping He
    Journal of Porous Materials, 2019, 26 : 371 - 379
  • [37] In situ palladium/nitrogen-doped ordered mesoporous carbon hybrids as highly active and durable electrocatalysts for oxygen reduction reaction
    Guo, Hu
    Wen, Daheng
    Wang, Tao
    Fan, Xiaoli
    Song, Li
    Gong, Hao
    Xia, Wei
    Gao, Bin
    Li, Linghui
    He, Jianping
    JOURNAL OF POROUS MATERIALS, 2019, 26 (02) : 371 - 379
  • [38] N-doped porous carbon spheres as metal-free electrocatalyst for oxygen reduction reaction
    Ren, Guangyuan
    Chen, Shaoqing
    Zhang, Junxian
    Zhang, Nianji
    Jiao, Chuanlai
    Qiu, Haifa
    Liu, Chongxuan
    Wang, Hsing-Lin
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (09) : 5751 - 5758
  • [39] A N-doped rice husk-based porous carbon as an electrocatalyst for the oxygen reduction reaction
    氮掺杂稻壳基多孔炭的制备及其氧气还原反应的电催化性能
    Lin, Hai-Bo (lhb910@jlu.edu.cn); Zhang, Wen-Li (hiteur@163.com), 1600, Institute of Metal Research Chinese Academy of Sciences (35): : 401 - 409
  • [40] Co nanoislands activated Co,N-doped porous carbon nanospheres for highly efficient and durable oxygen electrocatalyst
    Wu, Weicui
    Zong, Lingbo
    Chen, Xin
    Zhang, Wenjun
    Cui, Lixiu
    Yang, Yu
    Wang, Xia
    Li, ShaoXiang
    Wang, Lei
    APPLIED SURFACE SCIENCE, 2021, 541