LAPLACE AND SCHRÖDINGER OPERATORS WITHOUT EIGENVALUES ON HOMOGENEOUS AMENABLE GRAPHS

被引:0
|
作者
Grigorchuk, Rostislav [1 ]
Pittet, Christophe [2 ]
机构
[1] Texas A&M University, United States
[2] Aix-Marseille University, CNRS, I2M, University of Geneva, Switzerland
来源
arXiv | 2021年
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Graph Databases - Laplace transforms
引用
收藏
相关论文
共 50 条
  • [21] Behavior of eigenvalues of certain Schrödinger operators in the rational Dunkl setting
    Agnieszka Hejna
    Analysis and Mathematical Physics, 2021, 11
  • [22] The Number and Location of Eigenvalues of the Two Particle Discrete Schrödinger Operators
    I. N. Bozorov
    Sh. I. Khamidov
    S. N. Lakaev
    Lobachevskii Journal of Mathematics, 2022, 43 : 3079 - 3090
  • [23] Inverse problems for radial Schrödinger operators with the missing part of eigenvalues
    Xin-Jian Xu
    Chuan-Fu Yang
    Vjacheslav A. Yurko
    Ran Zhang
    Science China Mathematics, 2023, 66 : 1831 - 1848
  • [24] Absence of embedded eigenvalues for non-local Schrödinger operators
    Atsuhide Ishida
    József Lőrinczi
    Itaru Sasaki
    Journal of Evolution Equations, 2022, 22
  • [25] On the eigenvalues of spectral gaps of matrix-valued Schrödinger operators
    Salma Aljawi
    Marco Marletta
    Numerical Algorithms, 2021, 86 : 637 - 657
  • [26] Discrete and Embedded Eigenvalues for One-Dimensional Schrödinger Operators
    Christian Remling
    Communications in Mathematical Physics, 2007, 271 : 275 - 287
  • [27] Weyl’s Type Estimates on the Eigenvalues of Critical Schrödinger Operators
    Nikos I. Karachalios
    Letters in Mathematical Physics, 2008, 83 : 189 - 199
  • [28] Inverse problems for radial Schr?dinger operators with the missing part of eigenvalues
    Xin-Jian Xu
    Chuan-Fu Yang
    Vjacheslav A.Yurko
    Ran Zhang
    ScienceChina(Mathematics), 2023, 66 (08) : 1831 - 1848
  • [29] A New Tool for Approaching Eigenvalues of the Quadratic Pencil of Schrödinger Operators
    S. Kamouche
    M. Kurulay
    H. Guebbai
    M. Ghiat
    Lobachevskii Journal of Mathematics, 2024, 45 (6) : 2821 - 2832
  • [30] Eigenvalue Bounds for Schrödinger Operators with a Homogeneous Magnetic Field
    Rupert L. Frank
    Rikard Olofsson
    Letters in Mathematical Physics, 2011, 97