A nonlocal physics-informed deep learning framework using the peridynamic differential operator

被引:0
|
作者
Haghighat, Ehsan [1 ]
Bekar, Ali Can [2 ]
Madenci, Erdogan [2 ]
Juanes, Ruben [1 ]
机构
[1] Haghighat, Ehsan
[2] Bekar, Ali Can
[3] Madenci, Erdogan
[4] Juanes, Ruben
来源
Juanes, Ruben (juanes@mit.edu) | 1600年 / Elsevier B.V.卷 / 385期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] A Generalizable Physics-informed Learning Framework for Risk Probability Estimation
    Wang, Zhuoyuan
    Nakahira, Yorie
    LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 211, 2023, 211
  • [42] Physics-informed machine learning
    George Em Karniadakis
    Ioannis G. Kevrekidis
    Lu Lu
    Paris Perdikaris
    Sifan Wang
    Liu Yang
    Nature Reviews Physics, 2021, 3 : 422 - 440
  • [43] Physics-informed machine learning
    Karniadakis, George Em
    Kevrekidis, Ioannis G.
    Lu, Lu
    Perdikaris, Paris
    Wang, Sifan
    Yang, Liu
    NATURE REVIEWS PHYSICS, 2021, 3 (06) : 422 - 440
  • [44] Physics-Informed Graph Learning
    Peng, Ciyuan
    Xia, Feng
    Saikrishna, Vidya
    Liu, Huan
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW, 2022, : 732 - 739
  • [45] Toward prediction and insight of porosity formation in laser welding: A physics-informed deep learning framework
    Meng, Xiangmeng
    Bachmann, Marcel
    Yang, Fan
    Rethmeier, Michael
    ACTA MATERIALIA, 2025, 286
  • [46] nPINNs: Nonlocal physics-informed neural networks for a parametrized nonlocal universal Laplacian operator. Algorithms and applications
    Pang, G.
    D'Elia, M.
    Parks, M.
    Karniadakis, G. E.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 422
  • [47] Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
    Raissi, M.
    Perdikaris, P.
    Karniadakis, G. E.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 378 : 686 - 707
  • [48] SenseNet: A Physics-Informed Deep Learning Model for Shape Sensing
    Qiu, Yitao
    Arunachala, Prajwal Kammardi
    Linder, Christian
    JOURNAL OF ENGINEERING MECHANICS, 2023, 149 (03)
  • [49] Physics-informed deep learning for one-dimensional consolidation
    Yared W.Bekele
    Journal of Rock Mechanics and Geotechnical Engineering, 2021, (02) : 420 - 430
  • [50] Physics-informed deep learning approach for modeling crustal deformation
    Okazaki, Tomohisa
    Ito, Takeo
    Hirahara, Kazuro
    Ueda, Naonori
    NATURE COMMUNICATIONS, 2022, 13 (01)