A nonlocal physics-informed deep learning framework using the peridynamic differential operator

被引:0
|
作者
Haghighat, Ehsan [1 ]
Bekar, Ali Can [2 ]
Madenci, Erdogan [2 ]
Juanes, Ruben [1 ]
机构
[1] Haghighat, Ehsan
[2] Bekar, Ali Can
[3] Madenci, Erdogan
[4] Juanes, Ruben
来源
Juanes, Ruben (juanes@mit.edu) | 1600年 / Elsevier B.V.卷 / 385期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] A nonlocal physics-informed deep learning framework using the peridynamic differential operator
    Haghighat, Ehsan
    Bekar, Ali Can
    Madenci, Erdogan
    Juanes, Ruben
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 385
  • [2] A Framework for Physics-Informed Deep Learning Over Freeform Domains
    Mezzadri, Francesco
    Gasick, Joshua
    Qian, Xiaoping
    COMPUTER-AIDED DESIGN, 2023, 160
  • [3] An unsupervised latent/output physics-informed convolutional-LSTM network for solving partial differential equations using peridynamic differential operator
    Mavi, Arda
    Bekar, Ali Can
    Haghighat, Ehsan
    Madenci, Erdogan
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 407
  • [4] Filtered partial differential equations: a robust surrogate constraint in physics-informed deep learning framework
    Zhang, Dashan
    Chen, Yuntian
    Chen, Shiyi
    JOURNAL OF FLUID MECHANICS, 2024, 999
  • [5] Learning the solution operator of parametric partial differential equations with physics-informed DeepONets
    Wang, Sifan
    Wang, Hanwen
    Perdikaris, Paris
    SCIENCE ADVANCES, 2021, 7 (40)
  • [6] Physics-informed deep learning for digital materials
    Zhang, Zhizhou
    Gu, Grace X.
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2021, 11 (01)
  • [7] Physics-informed deep learning for digital materials
    Zhizhou Zhang
    Grace X Gu
    Theoretical & Applied Mechanics Letters, 2021, 11 (01) : 52 - 57
  • [8] A physics-informed deep learning framework for modeling of coronary in-stent restenosis
    Jianye Shi
    Kiran Manjunatha
    Marek Behr
    Felix Vogt
    Stefanie Reese
    Biomechanics and Modeling in Mechanobiology, 2024, 23 : 615 - 629
  • [9] A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics
    Haghighat, Ehsan
    Raissi, Maziar
    Moure, Adrian
    Gomez, Hector
    Juanes, Ruben
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 379
  • [10] A physics-informed deep learning framework for dynamic susceptibility contrast perfusion MRI
    Rotkopf, Lukas T.
    Ziener, Christian H.
    von Knebel-Doeberitz, Nikolaus
    Wolf, Sabine D.
    Hohmann, Anja
    Wick, Wolfgang
    Bendszus, Martin
    Schlemmer, Heinz-Peter
    Paech, Daniel
    Kurz, Felix T.
    MEDICAL PHYSICS, 2024, : 9031 - 9040