Crops for increasing soil organic carbon stocks – A global meta analysis

被引:0
|
作者
Mathew, Isack [1 ]
Shimelis, Hussein [1 ]
Mutema, Macdex [2 ]
Minasny, Budiman [3 ]
Chaplot, Vincent [1 ,4 ]
机构
[1] University of KwaZulu-Natal, School of Agricultural, Earth and Environmental Sciences, Private Bag X01, Scottsville,Pietermaritzburg,3209, South Africa
[2] Agricultural Research Council-Institute of Agricultural Engineering, Private Bag X529, Silverton,Pretoria, South Africa
[3] Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Camperdown,NSW,2006, Australia
[4] Laboratoire d'Océanographie et du Climat: Expérimentations et approches numériques (LOCEAN), UMR 7159, IRD/C NRS/UPMC/MNHN, IPSL, 4, place Jussieu, Paris,75252, France
关键词
Crops - Climate change - Grain (agricultural product) - Organic carbon - Plants (botany);
D O I
暂无
中图分类号
学科分类号
摘要
Quantifying the ability of plants to store atmospheric inorganic carbon (C) in their biomass and ultimately in the soil as organic C for long duration is crucial for climate change mitigation and soil fertility improvement. While many independent studies have been performed on the transfer of atmospheric C to soils for single crop types, the objective of this study was to compare the ability of crops, which are most commonly found worldwide, to transfer C to soils, and the associated controlling factors. We performed a meta-analysis of 227 research trials, which had reported C fluxes from plant to soil for different crops. On average, crops assimilated 4.5 Mg C ha−1 yr−1 from the atmosphere with values between 1.7 Mg C ha−1 yr−1, for barley (Hordeum vulgare) and 5.2 Mg C ha−1 yr−1 for maize (Zea mays). Sixty-one percent (61%) of the assimilated C was allocated to shoots, 20% to roots, 7% to soils while 12% was respired back into the atmosphere as autotrophic respiration by plants. Maize and ryegrass (Lolium perenne) had the greatest allocation to the soil (1.0 Mg C ha−1 yr−1 or 19% total assimilation), followed by wheat (Triticum aestivum). 0.8 Mg C ha−1 yr−1, 23%) and rice (Oryza Sativa, 0.7 Mg C ha−1 yr−1, 20%). Carbon allocation to the soil positively correlated to C allocation to roots (r = 0.33, P © 2020
引用
收藏
相关论文
共 50 条
  • [31] Critical carbon input to maintain current soil organic carbon stocks in global wheat systems
    Guocheng Wang
    Zhongkui Luo
    Pengfei Han
    Huansheng Chen
    Jingjing Xu
    Scientific Reports, 6
  • [32] Impact of soil erosion on soil organic carbon stocks
    Olson, Kenneth R.
    Al-Kaisi, Mandi
    Lal, Rattan
    Cihacek, Larry
    JOURNAL OF SOIL AND WATER CONSERVATION, 2016, 71 (03) : 61A - 67A
  • [33] Fertilization and tillage influence on soil organic carbon fractions: A global meta-analysis
    Liu, Chun
    He, Chunhuan
    Chang, Scott X.
    Chen, Xinli
    An, Shaoshan
    Wang, Dong
    Yan, Jing
    Zhang, Yuheng
    Li, Ping
    CATENA, 2024, 246
  • [34] Soil organic carbon changes following wetland restoration: A global meta-analysis
    Xu, Shangqi
    Liu, Xia
    Li, Xiujun
    Tian, Chunjie
    GEODERMA, 2019, 353 : 89 - 96
  • [35] Soil Organic Carbon Sequestration after Biochar Application: A Global Meta-Analysis
    Gross, Arthur
    Bromm, Tobias
    Glaser, Bruno
    AGRONOMY-BASEL, 2021, 11 (12):
  • [36] Soil organic carbon changes following wetland cultivation: A global meta-analysis
    Xu, Shangqi
    Liu, Xia
    Li, Xiujun
    Tian, Chunjie
    GEODERMA, 2019, 347 : 49 - 58
  • [37] A global meta-analysis of soil organic carbon response to corn stover removal
    Xu, Hui
    Sieverding, Heidi
    Kwon, Hoyoung
    Clay, David
    Stewart, Catherine
    Johnson, Jane M. F.
    Qin, Zhangcai
    Karlen, Douglas L.
    Wang, Michael
    GLOBAL CHANGE BIOLOGY BIOENERGY, 2019, 11 (10): : 1215 - 1233
  • [38] Impact of priming on global soil carbon stocks
    Guenet, Bertrand
    Camino-Serrano, Marta
    Ciais, Philippe
    Tifafi, Marwa
    Maignan, Fabienne
    Soong, Jennifer L.
    Janssens, Ivan A.
    GLOBAL CHANGE BIOLOGY, 2018, 24 (05) : 1873 - 1883
  • [39] A systematic analysis and review of soil organic carbon stocks in urban greenspaces
    Guo, Yang
    Han, Jiatong
    Bao, Haijun
    Wu, Yuzhe
    Shen, Liyin
    Xu, Xiangrui
    Chen, Ziwei
    Smith, Pete
    Abdalla, Mohamed
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 948
  • [40] Factors shaping soil organic carbon stocks in grass covered orchards across China: A meta-analysis
    Xiang, Yangzhou
    Li, Yuan
    Liu, Ying
    Zhang, Siyu
    Yue, Xuejiao
    Yao, Bin
    Xue, Jianming
    Lv, Wenqiang
    Zhang, Leiyi
    Xu, Xiuyue
    Li, Yonghua
    Li, Song
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 807