Prediction of Cardiovascular Risk Using Extreme Learning Machine-Tree Classifier on Apache Spark Cluster

被引:1
|
作者
Jaya Lakshmi A. [1 ]
Venkatramaphanikumar S. [1 ]
Kolli V.K.K. [1 ]
机构
[1] Department of Computer Science & Engineering, Vignan’s Foundation for Science, Technology & Research, Guntur, Andhra Pradesh, Vadlamudi
关键词
apache spark; health status; Machine learning; prediction system; social media; streaming data;
D O I
10.2174/2666255813999200904163404
中图分类号
学科分类号
摘要
Background: Currently, Machine Learning (ML) is considered a popular and important area in diverse fields of science and technology, image processing, automobiles, banking, finance, health care sector, etc. The easy availability of data and rapid improvements over machine learning techniques have made it more feasible to understand and to work on various channels of real-time health analytics. Methods: In this paper, a health status prediction system is proposed to detect cardiovascular diseases through patients’ tweets. Further analytics is carried on a distributed Apache Spark (AS) framework to reduce the time taken for both training and testing when compared with regular standalone machines. Social media streaming data is considered as one of the major sources for data in the proposed system. In this model, attributes of the incoming user tweets are analyzed, and accordingly, cardiovascular risk is predicted, and the latest health status is tweeted back as a reply to the respec-tive user along with a copy to the family and caretakers. Results: Performance of the proposed framework with Extreme Learning Machine (ELM)-Tree classifier is evaluated on two different corpora. It outperforms other classifiers such as Decision Trees, Naïve Bayes, Linear SVC, DNN, etc. in both accuracy and time. Conclusion: This proposed study hypothesizes a model for an alert-based system for heart status prediction by adding some additional features impacting the accuracy besides reducing the response time by using Big data Apache Spark Distributed Framework. © 2022 Bentham Science Publishers.
引用
收藏
页码:443 / 455
页数:12
相关论文
共 50 条
  • [31] Machine learning based models for Cardiovascular risk prediction
    Rajliwall, Nitten S.
    Davey, Rachel
    Chetty, Girija
    2018 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND DATA ENGINEERING (ICMLDE 2018), 2018, : 142 - 148
  • [32] A Machine Learning Approach for Risk Prediction of Cardiovascular Disease
    Panda, Shovna
    Palei, Shantilata
    Samartha, Mullapudi Venkata Sai
    Jena, Biswajit
    Saxena, Sanjay
    COMPUTER VISION AND IMAGE PROCESSING, CVIP 2023, PT II, 2024, 2010 : 313 - 323
  • [33] Prediction of occurrence of extreme events using machine learning
    J. Meiyazhagan
    S. Sudharsan
    A. Venkatesan
    M. Senthilvelan
    The European Physical Journal Plus, 137
  • [34] Prediction of occurrence of extreme events using machine learning
    Meiyazhagan, J.
    Sudharsan, S.
    Venkatesan, A.
    Senthilvelan, M.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (01):
  • [35] Automated Flare Prediction Using Extreme Learning Machine
    Bian, Yuqing
    Yang, Jianwei
    Li, Ming
    Lan, Rushi
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [36] Large-Scale Music Genre Analysis and Classification Using Machine Learning with Apache Spark
    Chaudhury, Mousumi
    Karami, Amin
    Ghazanfar, Mustansar Ali
    ELECTRONICS, 2022, 11 (16)
  • [37] Automated breast cancer detection using hybrid extreme learning machine classifier
    Melekoodappattu, Jayesh George
    Subbian, Perumal Sankar
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2020, 14 (5) : 5489 - 5498
  • [38] Automated breast cancer detection using hybrid extreme learning machine classifier
    Jayesh George Melekoodappattu
    Perumal Sankar Subbian
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 : 5489 - 5498
  • [39] A Scalable Hybrid Classifier for Music Genre Classification using Machine Learning Concepts and Spark
    Karunakaran, Nagamanoj
    Arya, Arti
    2018 INTERNATIONAL CONFERENCE ON INTELLIGENT AUTONOMOUS SYSTEMS (ICOIAS), 2018, : 128 - 135
  • [40] Development and validation of a cardiovascular risk prediction model for Sri Lankans using machine learning
    Mettananda, Chamila
    Sanjeewa, Isuru
    Arachchi, Tinul Benthota
    Wijesooriya, Avishka
    Chandrasena, Chiranjaya
    Weerasinghe, Tolani
    Solangaarachchige, Maheeka
    Ranasinghe, Achila
    Elpitiya, Isuru
    Sammandapperuma, Rashmi
    Kurukulasooriya, Sujeewani
    Ranawaka, Udaya
    Pathmeswaran, Arunasalam
    Kasturiratne, Anuradhini
    Kato, Nei
    Wickramasinghe, Rajitha
    Haddela, Prasanna
    de Silva, Janaka
    PLOS ONE, 2024, 19 (10):