Performance and mechanism investigation on the enhanced photocatalytic removal of atrazine on S-doped g-C3N4

被引:6
|
作者
Zheng A. [1 ]
Xie S. [1 ]
Li K. [1 ]
Zhang C. [2 ]
Shi H. [1 ]
机构
[1] School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai
[2] State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai
基金
中国国家自然科学基金;
关键词
Atrazine; Graphitic carbon nitride; High salty water; Reactive species; Sulfur doping;
D O I
10.1016/j.chemosphere.2023.140663
中图分类号
学科分类号
摘要
Developing efficient method for removing low-concentration atrazine, a poisonous chlorinated triazine herbicide with poor biodegradability, was an important measure to control its risk. In this work, highly efficient photocatalytic oxidation of atrazine was achieved on S-doped g-C3N4 (S-g-C3N4). Approximate 99.6% of atrazine was removed in 2 h with a reaction rate constant of 2.76 h−1, nearly 2.44 times that on g-C3N4. The mechanism investigation indicated the improved photocatalytic performance of S-g-C3N4 could be attributed to the enlarged specific surface area, extended light absorption as well as the accelerated separation of the photogenerated charge carriers, which was brought about by the successful doping of sulfur in g-C3N4. Meanwhile, the influence of sulfur doping on the generation and contribution of different reactive species in atrazine removal were also elucidated. It revealed that compared with g-C3N4, the more positive valence band potential of S-g-C3N4 was beneficial to produce more singlet oxygen, which could react synergistically with the superoxide radicals, leading to the improved atrazine removal efficiency. The S-g-C3N4 based photocatalytic system also showed preferential photocatalytic oxidation capability in removing other triazine pesticides compared with 3-chlorophenol (3-CP). The potential applicability of the S-g-C3N4 based photocatalytic system in removing atrazine in high salty water was also investigated, which exhibited superior anti-interference ability towards virous coexistent ions. This work will provide essential and fundamental information for establishing efficient photocatalytic system for triazine type pollutants in waters. © 2023 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [31] Investigation on g-C3N4/rGO/TiO2 nanocomposite with enhanced photocatalytic degradation performance
    Hu, Faguan
    Sun, Shiping
    Xu, Hongliang
    Li, Mingliang
    Hao, Xiaofei
    Shao, Gang
    Wang, Hailong
    Chen, Deliang
    Lu, Hongxia
    Zhang, Rui
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2021, 156 (156)
  • [32] Heterojunction Engineering of g-C3N4 with CuO for Enhanced Photocatalytic and Photoelectrochemical Performance
    Joseph, Merin
    Haridas, Suja
    Remello, Sebastian Nybin
    ENERGY TECHNOLOGY, 2024, 12 (04)
  • [33] Enhanced photocatalytic performance of g-C3N4 with BiOCl quantum dots modification
    Zheng, Chun-zhi
    Zhang, Chun-yong
    Zhang, Guo-hua
    Zhao, De-jian
    Wang, Ya-zhen
    MATERIALS RESEARCH BULLETIN, 2014, 55 : 212 - 215
  • [34] Enhanced photocatalytic performance of g-C3N4 nanosheets-BiOBr hybrids
    Chang, Fei
    Li, Chenlu
    Chen, Juan
    Wang, Jie
    Luo, Peru
    Xie, Yunchao
    Deng, Baoqing
    Hu, Xuefeng
    SUPERLATTICES AND MICROSTRUCTURES, 2014, 76 : 90 - 104
  • [35] Facile fabrication of In2O3/S-doped g-C3N4 heterojunction hybrids for enhanced visible-light photocatalytic hydrogen evolution
    Zhou, Pin
    Meng, Xianglong
    Sun, Tonghua
    MATERIALS LETTERS, 2020, 261
  • [36] Synthesis of sulfur doped g-C3N4 with enhanced photocatalytic activity in molten salt
    Guan, Keke
    Li, Junyi
    Lei, Wen
    Wang, Honghong
    Tong, Zhaoming
    Jia, Quanli
    Zhang, Haijun
    Zhang, Shaowei
    JOURNAL OF MATERIOMICS, 2021, 7 (05) : 1131 - 1142
  • [37] Preparation and Photocatalytic Performance of g-C3N4 Nanotubes
    Wang Xiao-Xue
    Gao Jian-Ping
    Zhao Rui-Ru
    Wu Yong-Li
    Hao Chao-Yue
    Qiu Hai-Xia
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2018, 34 (06) : 1059 - 1064
  • [38] SYNTHESIS AND PHOTOCATALYTIC PERFORMANCE OF g-C3N4 COMPOSITES
    Liu, D. Y.
    Dong, J. H.
    Liu, F. M.
    Gao, X. F.
    Yu, Y.
    Zhang, S. B.
    Dong, L. M.
    Guo, Y. K.
    JOURNAL OF OVONIC RESEARCH, 2019, 15 (04): : 239 - 246
  • [39] Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts co-doped with iron and phosphorus
    Hu, Shaozheng
    Ma, Lin
    You, Jiguang
    Li, Fayun
    Fan, Zhiping
    Lu, Guang
    Liu, Dan
    Gui, Jianzhou
    APPLIED SURFACE SCIENCE, 2014, 311 : 164 - 171
  • [40] S/P co-doped g-C3N4 with secondary calcination for excellent photocatalytic performance
    Yang, Yuhao
    Yan, Jiahao
    Zhang, Yixia
    Xing, Shushu
    Ran, Jie
    Ma, Yongning
    Li, Xiaolong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 51 : 962 - 974