CyTRACK: An open-source and user-friendly python toolbox for detecting and tracking cyclones

被引:0
|
作者
Pérez-Alarcón, Albenis [1 ,2 ,3 ]
Coll-Hidalgo, Patricia [1 ]
Trigo, Ricardo M. [3 ,4 ]
Nieto, Raquel [1 ]
Gimeno, Luis [1 ]
机构
[1] Centro de Investigación Mariña, Universidade de Vigo, Environmental Physics Laboratory (EPhysLab), Campus As Lagoas s/n, Ourense,32004, Spain
[2] Departamento de Meteorología, Instituto Superior de Tecnologías y Ciencias Aplicadas, Universidad de La Habana, La Habana,10400, Cuba
[3] Instituto Dom Luiz (IDL), Facultade de Ciências, Universidade de Lisboa, Lisboa,1749-016, Portugal
[4] Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro,21941-919, Brazil
来源
关键词
Climate models - High level languages - Life cycle - Sea level - Sensitivity analysis - Storms;
D O I
暂无
中图分类号
学科分类号
摘要
This work introduces CyTRACK (Cyclone TRACKing framework), a new open-source, comprehensive and user-friendly Python toolbox for detecting and tracking cyclones in model and reanalysis datasets. The kernel of CyTRACK is based on detecting critical cyclone centres in the mean sea level pressure field at a single time slice, which are then filtered following several threshold parameters. This paper also compares ten years of CyTRACK outputs forced with the ERA5 reanalysis against best-track archives and available cyclones track datasets. The results reveal that CyTRACK can capture the inter-annual (year to year) and intra annual (seasonal cycle) variability of cyclone frequency, life cycle characteristics and spatial distribution of track densities. Largest differences were observed in the annual and seasonal frequency. In summary, CyTRACK provides a user-friendly framework for sensitivity analysis of several free parameters used to perform the tracking, and it is useful for case or climatological studies of cyclone features. © 2024 The Authors
引用
收藏
相关论文
共 50 条
  • [21] An optimized intelligent open-source MLaaS framework for user-friendly clustering and anomaly detection
    Eldahshan, Kamal A.
    Abutaleb, Gaber E.
    Elemary, Berihan R.
    Ebeid, Ebeid A.
    Alhabshy, AbdAllah A.
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (18): : 26658 - 26684
  • [22] PGFLibPy: An Open-Source Parallel Python']Python Toolbox for Genetic Folding Algorithm
    Mezher, Mohammad A.
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2022, 26 (02) : 169 - 177
  • [23] User-friendly Parallelization of GAUDI Applications with Python']Python
    Mato, Pere
    Smith, Eoin
    17TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP09), 2010, 219
  • [24] BioPyC, an Open-Source Python']Python Toolbox for Offline Electroencephalographic and Physiological Signals Classification
    Appriou, Aurelien
    Pillette, Lea
    Trocellier, David
    Dutartre, Dan
    Cichocki, Andrzej
    Lotte, Fabien
    SENSORS, 2021, 21 (17)
  • [25] MindLink-Eumpy: An Open-Source Python']Python Toolbox for Multimodal Emotion Recognition
    Li, Ruixin
    Liang, Yan
    Liu, Xiaojian
    Wang, Bingbing
    Huang, Wenxin
    Cai, Zhaoxin
    Ye, Yaoguang
    Qiu, Lina
    Pan, Jiahui
    FRONTIERS IN HUMAN NEUROSCIENCE, 2021, 15
  • [26] Bayesian Optimization for Anything (BOA): An open-source framework for accessible, user-friendly Bayesian optimization
    Scyphers, Madeline E.
    Missik, Justine E. C.
    Kujawa, Haley
    Paulson, Joel A.
    Bohrer, Gil
    ENVIRONMENTAL MODELLING & SOFTWARE, 2024, 182
  • [27] PTVR : a user-friendly open-source script programming package to create Virtual Reality experiments
    Castet, Eric
    Termoz-Masson, Jeremy
    Delachambre, Johanna
    Hugon, Christophe
    Wu, Hui-Yin
    Kornprobst, Pierre
    PERCEPTION, 2022, 51 : 181 - 182
  • [28] BCI Toolbox: An open-source python']python package for the Bayesian causal inference model
    Zhu, Haocheng
    Beierholm, Ulrik
    Shams, Ladan
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (07)
  • [29] ScreenLife Capture: An open-source and user-friendly framework for collecting screenomes from Android smartphones
    Yee, Andrew Z. H.
    Yu, Ryan
    Lim, Sun Sun
    Lim, Kwan Hui
    Dinh, Tien Tuan Anh
    Loh, Lionell
    Hadianto, Andre
    Quizon, Miguel
    BEHAVIOR RESEARCH METHODS, 2023, 55 (08) : 4068 - 4085
  • [30] ScreenLife Capture: An open-source and user-friendly framework for collecting screenomes from Android smartphones
    Andrew Z. H. Yee
    Ryan Yu
    Sun Sun Lim
    Kwan Hui Lim
    Tien Tuan Anh Dinh
    Lionell Loh
    Andre Hadianto
    Miguel Quizon
    Behavior Research Methods, 2023, 55 : 4068 - 4085