Liquid-liquid phase separation of the prion protein is regulated by the octarepeat domain independently of histidines and copper

被引:7
|
作者
Kamps, Janine [1 ,2 ]
Bader, Verian [1 ,3 ]
Winklhofer, Konstanze F. [2 ,3 ]
Tatzelt, Joerg [1 ,2 ]
机构
[1] Ruhr Univ Bochum, Inst Biochem & Pathobiochem, Dept Biochem Neurodegenerat Dis, Bochum, Germany
[2] Cluster Excellence RESOLV, Bochum, Germany
[3] Ruhr Univ Bochum, Inst Biochem & Pathobiochem, Dept Mol Cell Biol, Bochum, Germany
关键词
BINDING-SITES; COACERVATION; TRANSITION; CONFORMATION; CLONING; FUS; PI;
D O I
10.1016/j.jbc.2024.107310
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Liquid-liquid phase separation (LLPS) of the mammalian prion protein is mainly driven by its intrinsically disordered N-terminal domain (N-PrP). However, the specific intermolecular interactions that promote LLPS remain largely unknown. Here, we used extensive mutagenesis and comparative analyses of evolutionarily distant PrP species to gain insight into the relationship between protein sequence and phase behavior. LLPS of mouse PrP is dependent on two polybasic motifs in N-PrP that are conserved in all tetrapods. A unique feature of mammalian N-PrP is the octarepeat domain with four histidines that mediate binding to copper ions. We now show that the octarepeat is critical for promoting LLPS and preventing the formation of PrP aggregates. Amphibian N-PrP, which contains the polybasic motifs but lacks a repeat domain and histidines, does not undergo LLPS and forms nondynamic protein assemblies indicative of aggregates. Insertion of the mouse octarepeat domain restored LLPS of amphibian N-PrP, supporting its essential role in regulating the phase transition of PrP. This activity of the octarepeat domain was neither dependent on the four highly conserved histidines nor on copper binding. Instead, the regularly spaced tryptophan residues were critical for regulating LLPS, presumably via cation- 7L interactions with the polybasic motifs. Our study reveals a novel role for the tryptophan residues in the octarepeat in controlling phase transition of PrP and indicates that the ability of mammalian PrP to undergo LLPS has evolved with the octarepeat in the intrinsically disordered domain but independently of the histidines.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Theoretical and computational methods of protein liquid-liquid phase separation
    Zhang Peng-Cheng
    Fang Wen-Yu
    Bao Lei
    Kang Wen-Bin
    ACTA PHYSICA SINICA, 2020, 69 (13)
  • [22] Molecular features of the copper binding sites in the octarepeat domain of the prion protein
    Burns, CS
    Aronoff-Spencer, E
    Dunham, CM
    Lario, P
    Avdievich, NI
    Antholine, WE
    Olmstead, MM
    Vrielink, A
    Gerfen, GJ
    Peisach, J
    Scott, WG
    Millhauser, GL
    BIOCHEMISTRY, 2002, 41 (12) : 3991 - 4001
  • [23] PHASE SEPARATION OF LIQUID-LIQUID DISPERSIONS
    PRILUTSK.GY
    VOLKOV, LV
    ZHURNAL PRIKLADNOI KHIMII, 1970, 43 (12) : 2669 - &
  • [24] RNA and liquid-liquid phase separation
    Guo, Qi
    Shi, Xiangmin
    Wang, Xiangting
    NON-CODING RNA RESEARCH, 2021, 6 (02): : 92 - 99
  • [25] Liquid-Liquid Phase Separation in Chromatin
    Rippe, Karsten
    COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2022, 14 (02):
  • [26] Liquid-Liquid phase separation in bacteria
    Guo, Dong
    Xiong, Yan
    Fu, Beibei
    Sha, Zhou
    Li, Bohao
    Wu, Haibo
    MICROBIOLOGICAL RESEARCH, 2024, 281
  • [27] Liquid-liquid phase separation in diseases
    Zhang, Xinyue
    Yuan, Lin
    Zhang, Wanlu
    Zhang, Yi
    Wu, Qun
    Li, Chunting
    Wu, Min
    Huang, Yongye
    MEDCOMM, 2024, 5 (07):
  • [28] Liquid-liquid phase separation in micropores
    Valiullin, R
    Vargas-Kruså, D
    Furó, I
    CURRENT APPLIED PHYSICS, 2004, 4 (2-4) : 370 - 372
  • [29] Liquid-Liquid Phase Separation in Biology
    Hyman, Anthony A.
    Weber, Christoph A.
    Juelicher, Frank
    ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, VOL 30, 2014, 30 : 39 - 58
  • [30] Liquid-Liquid Phase Separation in Disease
    Alberti, Simon
    Dormann, Dorothee
    ANNUAL REVIEW OF GENETICS, VOL 53, 2019, 53 : 171 - +