Comparative Study of Machine Learning Models and Distributed Runoff Models for Predicting Flood Water Level

被引:0
|
作者
Kubo T. [1 ]
Okazaki T. [2 ]
机构
[1] Graduate school of Engineering and Science, University of the Ryukyus, Senbaru, Nishihara
[2] Department of Computer Science and Intelligent Systems, University of the Ryukyus, Senbaru, Nishihara
关键词
Flood forecasting; Machine learning; Parameter optimization; Physics-based model; Underestimation error;
D O I
10.5573/IEIESPC.2023.12.3.215
中图分类号
学科分类号
摘要
Conventional flood forecasting methods can be roughly classified as physics-based models and data-oriented models, which both require parameter optimization. In parameter optimization, a search is generally done to minimize the magnitude of overall errors. However, under- and overestimation errors are not equivalent in flood forecasting since underestimation of the water level leads to delays in decision making. We propose a risk-aware forecasting method that uses a weighted loss function. We applied the proposed method to both physics-based models and machine learning models and compared the prediction results to clarify the difference in the prediction results according to the base model used. The results show that the model optimized by the weighted loss function reduced the underestimation error while maintaining the overall error. © 2023 Institute of Electronics and Information Engineers. All rights reserved.
引用
收藏
页码:215 / 222
页数:7
相关论文
共 50 条
  • [41] Predicting impact of land cover change on flood peak using hybrid machine learning models
    Mahdi Sedighkia
    Bithin Datta
    Neural Computing and Applications, 2023, 35 : 6723 - 6736
  • [42] Flood forecasting with machine learning models in an operational framework
    Nevo, Sella
    Morin, Efrat
    Rosenthal, Adi Gerzi
    Metzger, Asher
    Barshai, Chen
    Weitzner, Dana
    Voloshin, Dafi
    Kratzert, Frederik
    Elidan, Gal
    Dror, Gideon
    Begelman, Gregory
    Nearing, Grey
    Shalev, Guy
    Noga, Hila
    Shavitt, Ira
    Yuklea, Liora
    Royz, Moriah
    Giladi, Niv
    Levi, Nofar Peled
    Reich, Ofir
    Gilon, Oren
    Maor, Ronnie
    Timnat, Shahar
    Shechter, Tal
    Anisimov, Vladimir
    Gigi, Yotam
    Levin, Yuval
    Moshe, Zach
    Ben-Haim, Zvika
    Hassidim, Avinatan
    Matias, Yossi
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2022, 26 (15) : 4013 - 4032
  • [43] Predicting impact of land cover change on flood peak using hybrid machine learning models
    Sedighkia, Mahdi
    Datta, Bithin
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (09): : 6723 - 6736
  • [44] Predicting maximum scour depth at sluice outlet: a comparative study of machine learning models and empirical equations
    Le, Xuan-Hien
    Thu Hien, Le Thi
    ENVIRONMENTAL RESEARCH COMMUNICATIONS, 2024, 6 (01):
  • [45] A Comparative Study of a Nomogram and Machine Learning Models in Predicting Early Hematoma Expansion in Hypertensive Intracerebral Hemorrhage
    Ye, Haoyi
    Jiang, Yang
    Wu, Zhihua
    Ruan, Yaoqin
    Shen, Chen
    Xu, Jiexiong
    Han, Wen
    Jiang, Ruixin
    Cai, Jinhui
    Liu, Zhifeng
    ACADEMIC RADIOLOGY, 2024, 31 (12) : 5130 - 5140
  • [46] A Comparative Study of the Accuracy of Machine Learning Models for Predicting Tempered Martensite Hardness According to Model Complexity
    Jeon, Junhyub
    Kim, DongEung
    Hong, Jun-Ho
    Kim, Hwi-Jun
    Lee, Seok-Jae
    KOREAN JOURNAL OF METALS AND MATERIALS, 2022, 60 (09): : 713 - 721
  • [47] Absenteeism Prediction: A Comparative Study Using Machine Learning Models
    Dogruyol, Kagan
    Sekeroglu, Boran
    10TH INTERNATIONAL CONFERENCE ON THEORY AND APPLICATION OF SOFT COMPUTING, COMPUTING WITH WORDS AND PERCEPTIONS - ICSCCW-2019, 2020, 1095 : 728 - 734
  • [48] Confidentiality Solutions for Distributed Machine Learning Models
    Nymisha, Tummala Venkata Naga
    Krishna, Ch Nanda
    Mahita, Kantamneni
    2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE COMPUTING AND SMART SYSTEMS, ICSCSS 2024, 2024, : 895 - 901
  • [49] Machine Learning Models predicting Decompensation in Cirrhosis
    Mueller, Sophie Elisabeth
    Casper, Markus
    Ripoll, Cristina
    Zipprich, Alexander
    Horn, Paul
    Krawczyk, Marcin
    Lammert, Frank
    Reichert, Matthias Christian
    JOURNAL OF GASTROINTESTINAL AND LIVER DISEASES, 2025, 34 (01) : 71 - 80
  • [50] MACHINE LEARNING MODELS FOR PREDICTING SUCCESS OF STARTUPS
    Rodrigues, Fabiano
    Rodrigues, Francisco Aparecido
    Rocha Rodrigues, Thelma Valeria
    REVISTA DE GESTAO E PROJETOS, 2021, 12 (02): : 28 - 55