Comparative Study of Machine Learning Models and Distributed Runoff Models for Predicting Flood Water Level

被引:0
|
作者
Kubo T. [1 ]
Okazaki T. [2 ]
机构
[1] Graduate school of Engineering and Science, University of the Ryukyus, Senbaru, Nishihara
[2] Department of Computer Science and Intelligent Systems, University of the Ryukyus, Senbaru, Nishihara
关键词
Flood forecasting; Machine learning; Parameter optimization; Physics-based model; Underestimation error;
D O I
10.5573/IEIESPC.2023.12.3.215
中图分类号
学科分类号
摘要
Conventional flood forecasting methods can be roughly classified as physics-based models and data-oriented models, which both require parameter optimization. In parameter optimization, a search is generally done to minimize the magnitude of overall errors. However, under- and overestimation errors are not equivalent in flood forecasting since underestimation of the water level leads to delays in decision making. We propose a risk-aware forecasting method that uses a weighted loss function. We applied the proposed method to both physics-based models and machine learning models and compared the prediction results to clarify the difference in the prediction results according to the base model used. The results show that the model optimized by the weighted loss function reduced the underestimation error while maintaining the overall error. © 2023 Institute of Electronics and Information Engineers. All rights reserved.
引用
收藏
页码:215 / 222
页数:7
相关论文
共 50 条
  • [1] Predicting Kereh River's Water Quality: A comparative study of machine learning models
    Nasaruddin, Norashikin
    Ahmad, Afida
    Zakaria, Shahida Farhan
    Ul-Saufie, Ahmad Zia
    Osman, Mohamed Syazwan
    ENVIRONMENT-BEHAVIOUR PROCEEDINGS JOURNAL, 2023, 8 (26): : 213 - 219
  • [2] Predicting Kereh River's Water Quality: A comparative study of machine learning models
    Nasaruddin, Norashikin
    Ahmad, Afida
    Zakaria, Shahida Farhan
    Ul-Saufie, Ahmad Zia
    Osman, Mohamed Syazwan
    ENVIRONMENT-BEHAVIOUR PROCEEDINGS JOURNAL, 2023, 8 : 213 - 219
  • [3] A COMPREHENSIVE COMPARATIVE STUDY OF MACHINE LEARNING MODELS FOR PREDICTING CRYPTOCURRENCY
    Unvan, Yuksel Akay
    Ergenc, Cansu
    FACTA UNIVERSITATIS-SERIES ELECTRONICS AND ENERGETICS, 2024, 37 (01) : 211 - 227
  • [4] A comparative study of machine learning models for predicting the state of reactive mixing
    Ahmmed, B.
    Mudunuru, M. K.
    Karra, S.
    James, S. C.
    Vesselinov, V. V.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 432
  • [5] Predicting Employability of Candidates: Comparative Study of Different Machine Learning Models
    Hitharth, K. B. Sai
    Dhanya, N. M.
    PROCEEDINGS OF EMERGING TRENDS AND TECHNOLOGIES ON INTELLIGENT SYSTEMS (ETTIS 2021), 2022, 1371 : 179 - 190
  • [6] A comparative study of machine learning models for predicting length of stay in hospitals
    MEKHALDI R.N.
    CAULIER P.
    CHAABANE S.
    CHRAIBI A.
    PIECHOWIAK S.
    1600, Institute of Information Science (37): : 1025 - 1038
  • [7] A comparative study of machine learning regression models for predicting construction duration
    Zhang, Shen
    Li, Xuechun
    JOURNAL OF ASIAN ARCHITECTURE AND BUILDING ENGINEERING, 2024, 23 (06) : 1980 - 1996
  • [8] A Comparative Study of Machine Learning Models for Predicting Meteorological Data in Agricultural Applications
    Suljug, Jelena
    Spisic, Josip
    Grgic, Kresimir
    Zagar, Drago
    ELECTRONICS, 2024, 13 (16)
  • [9] Predicting Flood Water Level Using Combined Hybrid Model of Rainfall-Runoff and AI-Based Models
    Kim, Donghyun
    Han, Heechan
    Lee, Haneul
    Kang, Yujin
    Wang, Wonjoon
    Kim, Hung Soo
    KSCE JOURNAL OF CIVIL ENGINEERING, 2024, 28 (04) : 1580 - 1593
  • [10] Predicting Flood Water Level Using Combined Hybrid Model of Rainfall-Runoff and AI-Based Models
    Donghyun Kim
    Heechan Han
    Haneul Lee
    Yujin Kang
    Wonjoon Wang
    Hung Soo Kim
    KSCE Journal of Civil Engineering, 2024, 28 : 1580 - 1593