Dual ODE: Spatial-Spectral Neural Ordinary Differential Equations for Hyperspectral Image Super-Resolution

被引:0
|
作者
Zhang, Xiao [1 ]
Song, Chongxing [2 ]
You, Tao [3 ]
Bai, Qicheng [3 ]
Wei, Wei [2 ]
Zhang, Lei [2 ]
机构
[1] Northwestern Polytechnical University, School of Software, Xi'an,710072, China
[2] Northwestern Polytechnical University, Shaanxi Provincial Key Laboratory of Speech and Image Information Processing, School of Computer Science, The Natl. Eng. Laboratory for Integrated Aerospace-Ground-Ocean Big Data Application Technology, School of Comp
[3] Northwestern Polytechnical University, School of Computer Science, Xi'an,710072, China
基金
中国国家自然科学基金;
关键词
Deep neural networks - Image enhancement - Image reconstruction - Job analysis - Network architecture - Optical resolving power;
D O I
暂无
中图分类号
学科分类号
摘要
Significant advancements have been made in hyperspectral image (HSI) super-resolution with the development of deep-learning techniques. However, the current application of deep neural network architectures to HSI super-resolution heavily relies on empirical design strategies, which can potentially impede the improvement of image reconstruction performance and introduce distortions in the results. To address this, we propose an innovative HSI super-resolution network called dual ordinary differential equations (Dual ODEs). Drawing inspiration from ordinary differential equations (ODEs), our approach offers reliable guidelines for the design of HSI super-resolution networks. The Dual ODE model leverages a spatial ODE block to extract spatial information and a spectral ODE block to capture internal spectral features. This is accomplished by redefining the conventional residual module using the multiple ODE functions method. To evaluate the performance of our model, we conducted extensive experiments on four benchmark HSI datasets. The results conclusively demonstrate the superiority of our Dual ODE approach over state-of-the-art models. Moreover, our approach incorporates a small number of parameters while maintaining an interpretable model design, thereby reducing model complexity. © 1980-2012 IEEE.
引用
收藏
页码:1 / 15
相关论文
共 50 条
  • [31] Model-Guided Deep Unfolded Fusion Network With Nonlocal Spatial-Spectral Priors for Hyperspectral Image Super-Resolution
    Khader, Abdolraheem
    Yang, Jingxiang
    Xiao, Liang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 4607 - 4625
  • [32] Hyperspectral Imagery Super-Resolution by Compressive Sensing Inspired Dictionary Learning and Spatial-Spectral Regularization
    Huang, Wei
    Xiao, Liang
    Liu, Hongyi
    Wei, Zhihui
    SENSORS, 2015, 15 (01) : 2041 - 2058
  • [33] Super-Resolution Mapping Based on Spatial-Spectral Correlation for Spectral Imagery
    Wang, Peng
    Wang, Liguo
    Leung, Henry
    Zhang, Gong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (03): : 2256 - 2268
  • [34] DEEP RESIDUAL NETWORK OF SPECTRAL AND SPATIAL FUSION FOR HYPERSPECTRAL IMAGE SUPER-RESOLUTION
    Han, Xian-Hua
    Chen, Yen-Wei
    2019 IEEE FIFTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM 2019), 2019, : 266 - 270
  • [35] Hyperspectral Image Super-Resolution by Spectral Difference Learning and Spatial Error Correction
    Hu, Jing
    Li, Yunsong
    Xie, Weiying
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (10) : 1825 - 1829
  • [36] Group Shuffle and Spectral-Spatial Fusion for Hyperspectral Image Super-Resolution
    Wang, Xinya
    Cheng, Yingsong
    Mei, Xiaoguang
    Jiang, Junjun
    Ma, Jiayi
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2022, 8 : 1223 - 1236
  • [37] Spatial Spectral VAFormer Graph Convolution Hyperspectral Image Super-Resolution Network
    Fan, Jiale
    Li, Qiang
    Zhang, Ruifeng
    Guan, Xin
    LASER & OPTOELECTRONICS PROGRESS, 2025, 62 (02)
  • [38] Exploring the Spectral Prior for Hyperspectral Image Super-Resolution
    Hu, Qian
    Wang, Xinya
    Jiang, Junjun
    Zhang, Xiao-Ping
    Ma, Jiayi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 5260 - 5272
  • [39] AS3ITransUNet: Spatial-Spectral Interactive Transformer U-Net With Alternating Sampling for Hyperspectral Image Super-Resolution
    Xu, Qin
    Liu, Shiji
    Wang, Jiahui
    Jiang, Bo
    Tang, Jin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [40] Neural Ordinary Differential Equations for Hyperspectral Image Classification
    Paoletti, Mercedes E.
    Mario Haut, Juan
    Plaza, Javier
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (03): : 1718 - 1734