Usage of R513A as an alternative to R134a in a refrigeration system: An experimental investigation based on the Kigali amendment

被引:2
|
作者
Dağıdır K. [1 ]
Bilen K. [2 ]
机构
[1] Tarsus University, Faculty of Engineering, Department of Mechanical Engineering, Mersin
[2] Ankara Yıldırım Beyazıt University, Faculty of Engineering and Natural Sciences, Department of Mechanical Engineering, Ankara
来源
关键词
Alternative refrigerant; Energetic analysis; Exergetic analysis; Kigali amendment; R134a; R513A; VCRS;
D O I
10.1016/j.ijft.2024.100582
中图分类号
学科分类号
摘要
In this study, the use of the alternative refrigerant R513A instead of R134a in a mechanical vapor compression refrigeration system was experimentally investigated in terms of the first and second laws of thermodynamics on the basis of the Kigali Amendment. The investigations were carried out approximately at a cooling medium temperature (TL) of 0, 4, and 8 °C and a heating medium temperature (TH) of 30, 35, and 40 °C without any modifications to the system. The energetic and exergetic performance parameters obtained in this study were related to the amount of refrigerant in accordance with the criteria restricting the use of fluorinated greenhouse gases after the Kigali Amendment. Accordingly, the required refrigerant mass flow rate per unit energetic (power input, cooling capacity, COP value) and exergetic (total exergy destruction rate and exergy efficiency) performance parameters were determined. As a result, the system was found to operate safely when R513A was used instead of R134a without any modification. In addition, the refrigerant mass flow rate per unit power input was almost the same for both refrigerants. However, R513A was found to have approximately 15 % more refrigerant mass flow per unit cooling capacity than R134a. This resulted in the refrigerant mass flow rate per unit COP being approximately 20 % higher for R513A. On the other hand, the refrigerant mass flow rate per unit exergy efficiency calculated for R513A was found to be about 15 % higher than R134a. © 2024 The Author(s)
引用
收藏
相关论文
共 50 条
  • [21] EXPERIMENTAL INVESTIGATION ON R134A AIRBORNE VAPOR-COMPRESSION REFRIGERATION SYSTEM
    李运祥
    潘泉
    刘娟
    Transactions of Nanjing University of Aeronautics & Astronautics, 2013, 30 (01) : 46 - 52
  • [22] EXPERIMENTAL INVESTIGATION ON R134A AIRBORNE VAPOR-COMPRESSION REFRIGERATION SYSTEM
    李运祥
    潘泉
    刘娟
    Transactions of Nanjing University of Aeronautics and Astronautics, 2013, (01) : 46 - 52
  • [23] Experimental evaluation of low-GWP refrigerants R513A, R1234yf and R436A as alternatives for R134a in a cascade refrigeration cycle with R744
    Ojeda, Frank William Adolfo Blanco
    Queiroz, Marcus Vinicius Almeida
    Pico, David Fernando Marcucci
    Parise, Jose Alberto dos Reis
    Bandarra Filho, Enio Pedone
    INTERNATIONAL JOURNAL OF REFRIGERATION, 2022, 144 : 175 - 187
  • [24] Experimental investigations on a R134a ejector applied in a refrigeration system
    Yan, Jiwei
    Chen, Guangming
    Liu, Chengyan
    Tang, Liming
    Chen, Qi
    APPLIED THERMAL ENGINEERING, 2017, 110 : 1061 - 1065
  • [25] Assessment of a mini-channel condenser at high ambient temperatures based on experimental measurements working with R134a, R513A and R1234yf
    Lopez-Belchi, Alejandro
    APPLIED THERMAL ENGINEERING, 2019, 155 : 341 - 353
  • [26] Experimental comparison of flow boiling heat transfer in smooth and microfin tubes using R134a, R1234yf, and R513A
    Yasser, Zahraa Kareem
    Oudah, Mahmood Hasan
    INTERNATIONAL JOURNAL OF REFRIGERATION, 2024, 168 : 506 - 520
  • [27] PERFORMANCE OF R1234yf AND R513A AS ALTERNATIVES TO R134a IN AUTOMOTIVE AIR CONDITIONING SYSTEMS IN WINTER
    Meng, Zhaofeng
    Cui, Xiangna
    Liu, Yin
    Wang, Shun
    DU, Chenyang
    Hu, Rusheng
    THERMAL SCIENCE, 2023, 27 (3A): : 1937 - 1946
  • [28] Performance investigation of an ejector expansion refrigeration system working on different alternative refrigerants to R134a
    Al-Chlaihawi, Kadhim K. Idan
    Al-Rubaye, Ahmed
    Kadhim, Hakim T.
    AUSTRALIAN JOURNAL OF MECHANICAL ENGINEERING, 2023, 21 (05) : 1806 - 1817
  • [29] Analysis of COP Using Blended R134a and R600a in Refrigeration System as a Replacement to R134a
    Panda N.K.
    Mishra S.K.
    Samal D.K.
    Padhi B.N.
    Journal of The Institution of Engineers (India): Series C, 2024, 105 (03) : 427 - 435
  • [30] A COMPETITIVE STUDY OF A GEOTHERMAL HEAT PUMP EQUIPPED WITH AN INTERMEDIATE ECONOMIZER FOR R134a AND R513a WORKING FLUIDS
    Aryanfar, Yashar
    Mohtaram, Soheil
    Ghazy, Ahmed
    Kaaniche, Khaled
    Garcia-alcaraz, Jorge Luis
    Sun, Hongguang
    THERMAL SCIENCE, 2023, 27 (6B): : 5025 - 5038