Development of an Algorithm for Multicriteria Optimization of Deep Learning Neural Networks

被引:0
|
作者
Alexandrov I.A. [1 ]
Kirichek A.V. [2 ]
Kuklin V.Z. [1 ]
Chervyakov L.M. [1 ]
机构
[1] IDTI RAS Institute for Design-Technological Informatics of RAS, Moscow
来源
HighTech and Innovation Journal | 2023年 / 4卷 / 01期
关键词
Feature Selection; Genetic Algorithms; Hybrid Co-Evolutionary Algorithm; Multicriteria Optimization; Neural Networks;
D O I
10.28991/HIJ-2023-04-01-011
中图分类号
学科分类号
摘要
Nowadays, machine learning methods are actively used to process big data. A promising direction is neural networks, in which structure optimization occurs on the principles of self-configuration. Genetic algorithms are applied to solve this nontrivial problem. Most multicriteria evolutionary algorithms use a procedure known as non-dominant sorting to rank decisions. However, the efficiency of procedures for adding points and updating rank values in non-dominated sorting (incremental non-dominated sorting) remains low. In this regard, this research improves the performance of these algorithms, including the condition of an asynchronous calculation of the fitness of individuals. The relevance of the research is determined by the fact that although many scholars and specialists have studied the self-tuning of neural networks, they have not yet proposed a comprehensive solution to this problem. In particular, algorithms for efficient non-dominated sorting under conditions of incremental and asynchronous updates when using evolutionary methods of multicriteria optimization have not been fully developed to date. To achieve this goal, a hybrid co-evolutionary algorithm was developed that significantly outperforms all algorithms included in it, including error-back propagation and genetic algorithms that operate separately. The novelty of the obtained results lies in the fact that the developed algorithms have minimal asymptotic complexity. The practical value of the developed algorithms is associated with the fact that they make it possible to solve applied problems of increased complexity in a practically acceptable time. © Authors retain all copyrights.
引用
收藏
页码:157 / 173
页数:16
相关论文
共 50 条
  • [32] ESOA Algorithm Based on learning rate optimization in Convolutional neural networks
    Wei, Peiyang
    Shi, Xiaoyu
    Zhou, Jiesan
    2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023, 2023, : 435 - 439
  • [33] Particle Swarm Optimization based RBF Neural Networks Learning Algorithm
    Kang, Qi
    An, Jing
    Yang, Dongsheng
    Wang, Lei
    Wu, Qidi
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 605 - +
  • [34] Airfoil shape optimization using genetic algorithm coupled deep neural networks
    Wu, Ming-Yu
    Yuan, Xin-Yi
    Chen, Zhi-Hua
    Wu, Wei-Tao
    Hua, Yue
    Aubry, Nadine
    PHYSICS OF FLUIDS, 2023, 35 (08)
  • [35] NeuralBO: A black-box optimization algorithm using deep neural networks
    Dat, Phan-Trong
    Hung, Tran-The
    Gupta, Sunil
    NEUROCOMPUTING, 2023, 559
  • [36] Voice Pathology Detection Using Artificial Neural Networks and Support Vector Machines Powered by a Multicriteria Optimization Algorithm
    Jhoan Areiza-Laverde, Henry
    Eduardo Castro-Ospina, Andres
    Hernan Peluffo-Ordonez, Diego
    APPLIED COMPUTER SCIENCES IN ENGINEERING, WEA 2018, PT I, 2018, 915 : 148 - 159
  • [37] Genetic Algorithm Based Deep Learning Neural Network Structure and Hyperparameter Optimization
    Lee, Sanghyeop
    Kim, Junyeob
    Kang, Hyeon
    Kang, Do-Young
    Park, Jangsik
    APPLIED SCIENCES-BASEL, 2021, 11 (02): : 1 - 12
  • [38] Online Deep Learning: Learning Deep Neural Networks on the Fly
    Sahoo, Doyen
    Pham, Quang
    Lu, Jing
    Hoi, Steven C. H.
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 2660 - 2666
  • [39] Structure optimization of neural networks with the A*-algorithm
    Doering, A
    Galicki, M
    Witte, H
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (06): : 1434 - 1445
  • [40] Genetic algorithm for neural networks optimization
    Setyawati, BR
    Creese, RC
    Sahirman, S
    INTELLIGENT SYSTEMS IN DESIGN AND MANUFACTURING V, 2004, 5605 : 54 - 61