A Feature Extraction Method for scRNA-seq Processing and Its Application on COVID-19 Data Analysis

被引:0
|
作者
Shi, Xiumin [1 ]
Wu, Xiyuan [1 ]
Qin, Hengyu [1 ]
机构
[1] School of Information and Electronics, Beijing Institute of Technology, Beijing,100081, China
关键词
461.2 Biological Materials and Tissue Engineering - 461.7 Health Care - 461.8.2 Bioinformatics - 461.9 Biology - 716.1 Information Theory and Signal Processing - 723.2 Data Processing and Image Processing - 802.3 Chemical Operations;
D O I
暂无
中图分类号
学科分类号
摘要
28
引用
收藏
页码:285 / 292
相关论文
共 50 条
  • [31] scLENS: data-driven signal detection for unbiased scRNA-seq data analysis
    Kim, Hyun
    Chang, Won
    Chae, Seok Joo
    Park, Jong-Eun
    Seo, Minseok
    Kim, Jae Kyoung
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [32] scFED: Clustering Identifying Cell Types of scRNA-Seq Data Based on Feature Engineering Denoising
    Liu, Yang
    Li, Feng
    Shang, Junliang
    Liu, Jinxing
    Wang, Juan
    Ge, Daohui
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2023, 15 (04) : 590 - 601
  • [33] Graph contrastive learning as a versatile foundation for advanced scRNA-seq data analysis
    Zhang, Zhenhao
    Liu, Yuxi
    Xiao, Meichen
    Wang, Kun
    Huang, Yu
    Bian, Jiang
    Yang, Ruolin
    Li, Fuyi
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (06)
  • [34] scFED: Clustering Identifying Cell Types of scRNA-Seq Data Based on Feature Engineering Denoising
    Yang Liu
    Feng Li
    Junliang Shang
    Jinxing Liu
    Juan Wang
    Daohui Ge
    Interdisciplinary Sciences: Computational Life Sciences, 2023, 15 : 590 - 601
  • [35] pyNVR: investigating factors affecting feature selection from scRNA-seq data for lineage reconstruction
    Chen, Bob
    Herring, Charles A.
    Lau, Ken S.
    BIOINFORMATICS, 2019, 35 (13) : 2335 - 2337
  • [36] Improved dropClust R package with integrative analysis support for scRNA-seq data
    Sinha, Debajyoti
    Sinha, Pradyumn
    Saha, Ritwik
    Bandyopadhyay, Sanghamitra
    Sengupta, Debarka
    BIOINFORMATICS, 2020, 36 (06) : 1946 - 1947
  • [37] COTAN: scRNA-seq data analysis based on gene co-expression
    Galfre, Silvia Giulia
    Morandin, Francesco
    Pietrosanto, Marco
    Cremisi, Federico
    Helmer-Citterich, Manuela
    NAR GENOMICS AND BIOINFORMATICS, 2021, 3 (03)
  • [38] InfoScan: A New Transcript Identification Tool Based on scRNA-Seq and Its Application in Glioblastoma
    Mei, Shiqiang
    Huang, Jinjin
    Zhang, Zhen
    Lei, Haotian
    Huang, Qiaojuan
    Qu, Lianghu
    Zheng, Lingling
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2025, 26 (05)
  • [39] A novel f-divergence based generative adversarial imputation method for scRNA-seq data analysis
    Si, Tong
    Hopkins, Zackary
    Yanev, John
    Hou, Jie
    Gong, Haijun
    PLOS ONE, 2023, 18 (11):
  • [40] scGMAAE: Gaussian mixture adversarial autoencoders for diversification analysis of scRNA-seq data
    Wang, Hai-Yun
    Zhao, Jian-Ping
    Zheng, Chun-Hou
    Su, Yan-Sen
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (01)