Life cycle analysis of a waste heat recovery for marine engines Organic Rankine Cycle

被引:0
|
作者
Kallis, George [1 ]
Roumpedakis, Tryfon C. [1 ]
Pallis, Platon [1 ]
Koutantzi, Zoi [1 ]
Charalampidis, Antonios [1 ]
Karellas, Sotirios [1 ]
机构
[1] Laboratory of Steam Boilers and Thermal Plants, National Technical University of Athens (NTUA), 9 Heroon Polytechniou Str., Zografou, Athens,15780, Greece
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The Marine ORC prototype unit is based on a conventional low-temperature subcritical Organic Rankine Cycle and has been designed as a waste heat recovery system for the jacket water of marine diesel auxiliary internal combustion engines (ICEs). In the present work, the key remarks of the life cycle analysis on the experimental test rig, installed in Athens, Greece, are presented. The analysis of the impacts has been conducted using the ReCiPe 2016 method. The system was evaluated in coupling with the auxiliary ICE and was compared against an ICE of the same electrical energy output on annual basis. The ICE-marine ORC system enhanced the environmental performance up to 3% on many impact categories, apart from the mineral resources and the terrestrial ecotoxicity which is related to the extended use of copper-based materials. The working fluid was found to have a major impact on the ozone depletion and the global warming categories with a share of 95.9% and 91.6% over the total equivalent system emissions, respectively. On the other hand, the replacement of R134a with R1234ze was found to reduce the ORC's global warming impact down to less than 10% of its initial value. © 2022 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [41] Waste Heat Recovery of a PEMFC System by Using Organic Rankine Cycle
    He, Tianqi
    Shi, Rongqi
    Peng, Jie
    Zhuge, Weilin
    Zhang, Yangjun
    ENERGIES, 2016, 9 (04)
  • [42] Analysis and optimization of organic Rankine cycle for IC engine waste heat recovery system
    Raghulnath, D.
    Saravanan, K.
    Mahendran, J.
    Kumar, M. Ranjith
    Lakshmanan, P.
    MATERIALS TODAY-PROCEEDINGS, 2020, 21 : 30 - 35
  • [44] Thermodynamic analysis of an organic Rankine cycle for waste heat recovery from gas turbines
    Carcasci, Carlo
    Ferraro, Riccardo
    Miliotti, Edoardo
    ENERGY, 2014, 65 : 91 - 100
  • [45] Analysis of a supercritical organic Rankine cycle for low-grace waste heat recovery
    Xiao, Song
    Chen, Xiaoyu
    Qi, Lin
    Liu, Yanna
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-ENERGY, 2020, 173 (01) : 3 - 12
  • [46] Multiobjective Optimization of a Plate Heat Exchanger in a Waste Heat Recovery Organic Rankine Cycle System for Natural Gas Engines
    Valencia, Guillermo
    Nunez, Jose
    Duarte, Jorge
    ENTROPY, 2019, 21 (07)
  • [47] Analysis of a combined trilateral cycle - organic Rankine cycle (TLC-ORC) system for waste heat recovery
    Li, Zhi
    Huang, Rui
    Lu, Yiji
    Roskilly, Antony Paul
    Yu, Xiaoli
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 1786 - 1791
  • [48] Performance analysis of a gas turbine combined cycle power plant with waste heat recovery in Organic Rankine Cycle
    Balanescu, Dan-Teodor
    Homutescu, Vlad-Mario
    12TH INTERNATIONAL CONFERENCE INTERDISCIPLINARITY IN ENGINEERING (INTER-ENG 2018), 2019, 32 : 520 - 528
  • [49] Technical and economic analyses of waste heat energy recovery from internal combustion engines by the Organic Rankine Cycle
    Neto, Rieder de Oliveira
    Rodriguez Sotomonte, Cesar Adolfo
    Coronado, Christian J. R.
    Nascimento, Marco A. R.
    ENERGY CONVERSION AND MANAGEMENT, 2016, 129 : 168 - 179
  • [50] A comprehensive review on organic Rankine cycle systems used as waste heat recovery technologies for marine applications
    Konur, Olgun
    Colpan, C. Ozgur
    Saatcioglu, Omur Y.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2022, 44 (02) : 4083 - 4122