Feature extraction method of football fouls based on deep learning algorithm

被引:0
|
作者
Ma W. [1 ]
Lv Y. [2 ]
机构
[1] Institute of Physical Education, Jilin Sports University, Changchun
[2] Teaching Affairs Office, Jilin Sports University, Changchun
关键词
action recognition; background subtraction; deep learning; human motion; mean shift algorithm;
D O I
10.1504/IJICT.2023.131155
中图分类号
学科分类号
摘要
In order to overcome the problems of abnormal detection and low accuracy in the process of football foul feature extraction, this paper proposes a football foul feature extraction method based on deep learning algorithm to accurately identify the fouls in the process of normal competition. In this method, the background is eliminated by the difference between the input image and the background image, so as to obtain the effective detection target. According to the characteristics of football competition, the human motion tracking algorithm is proposed. Through the template representation, candidate target representation, similarity measurement calculation and search strategy, the dynamic target is tracked in real-time, and its dynamic information is obtained. Finally, the star skeleton feature is used to extract the football foul action feature, and the image feature is transformed into available data to realise the data extraction of action feature. The experimental results show that the proposed method can detect the target with low accuracy. Copyright © 2023 Inderscience Enterprises Ltd.
引用
收藏
页码:404 / 421
页数:17
相关论文
共 50 条
  • [31] Deep Feature Screening Method Based on a Cascade Algorithm
    Wang, Shuai
    Pei, Liqiang
    Liu, Runjie
    Shen, Jinyuan
    2019 8TH INTERNATIONAL SYMPOSIUM ON NEXT GENERATION ELECTRONICS (ISNE), 2019,
  • [32] Feature Extraction and Classification of Music Content Based on Deep Learning
    Shi, Qianqiu
    Ko, Young Chun
    ADVANCES IN MULTIMEDIA, 2022, 2022
  • [33] Target Tracking Algorithm in Football Match Video Based on Deep Learning
    Zhao, Wei
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2022, 2022
  • [34] Deep learning based latent feature extraction for intrusion detection
    Mighan, Soosan Naderi
    Kahani, Mohsen
    26TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2018), 2018, : 1511 - 1516
  • [35] Palmprint Phenotype Feature Extraction and Classification Based on Deep Learning
    Fan, Yu
    Li, Jinxi
    Song, Shaoying
    Zhang, Haiguo
    Wang, Sijia
    Zhai, Guangtao
    PHENOMICS, 2022, 2 (04): : 219 - 229
  • [36] Information-Based Learning of Deep Architectures for Feature Extraction
    Melacci, Stefano
    Lippi, Marco
    Gori, Marco
    Maggini, Marco
    IMAGE ANALYSIS AND PROCESSING (ICIAP 2013), PT II, 2013, 8157 : 101 - 110
  • [37] Face Dynamic Modeling Based on Deep Learning and Feature Extraction
    Tong, Lijing
    Yang, Jinqiu
    Lai, Yuping
    Xiao, Zequn
    2019 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE APPLICATIONS AND TECHNOLOGIES (AIAAT 2019), 2019, 646
  • [38] Palmprint Phenotype Feature Extraction and Classification Based on Deep Learning
    Yu Fan
    Jinxi Li
    Shaoying Song
    Haiguo Zhang
    Sijia Wang
    Guangtao Zhai
    Phenomics, 2022, 2 : 219 - 229
  • [39] Aircarft Signal Feature Extraction and Recognition Based on Deep Learning
    Wang, Guanhua
    Zou, Cong
    Zhang, Chao
    Pan, Changyong
    Song, Jian
    Yang, Fang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (09) : 9625 - 9634
  • [40] Correction to: Text feature extraction based on deep learning: a review
    Hong Liang
    Xiao Sun
    Yunlei Sun
    Yuan Gao
    EURASIP Journal on Wireless Communications and Networking, 2018