Tractable approximate gaussian inference for bayesian neural networks

被引:0
|
作者
Goulet, James A. [1 ]
Nguyen, Luong Ha [1 ]
Amiri, Saeid [1 ]
机构
[1] Department of Civil Engineering, Polytechnique Montréal, Montréal, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Covariance matrix - Network architecture - Bayesian networks - Benchmarking - Gaussian distribution;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose an analytical method for performing tractable approximate Gaussian inference (TAGI) in Bayesian neural networks. The method enables the analytical Gaussian inference of the posterior mean vector and diagonal covariance matrix for weights and biases. The method proposed has a computational complexity of O(n) with respect to the number of parameters n, and the tests performed on regression and classification benchmarks confirm that, for a same network architecture, it matches the performance of existing methods relying on gradient backpropagation. ©2021 James-A. Goulet, Luong Ha Nguyen, Saeid Amiri.
引用
收藏
相关论文
共 50 条
  • [31] Approximate inference algorithms for two-layer Bayesian networks
    Ng, AY
    Jordan, MI
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 12, 2000, 12 : 533 - 539
  • [32] Approximate inference for dynamic Bayesian networks: sliding window approach
    Gao, Xiao-Guang
    Mei, Jun-Feng
    Chen, Hai-Yang
    Chen, Da-Qing
    APPLIED INTELLIGENCE, 2014, 40 (04) : 575 - 591
  • [33] Approximate inference for dynamic Bayesian networks: sliding window approach
    Xiao-Guang Gao
    Jun-Feng Mei
    Hai-Yang Chen
    Da-Qing Chen
    Applied Intelligence, 2014, 40 : 575 - 591
  • [34] On Designing Approximate Inference Algorithms for Multiply Sectioned Bayesian Networks
    Jin, Karen H.
    Wu, Dan
    Wu, Libing
    2009 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING ( GRC 2009), 2009, : 294 - +
  • [35] Approximate Bayesian inference from noisy likelihoods with Gaussian process emulated MCMC
    Jarvenpaa, Marko
    Corander, Jukka
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25
  • [36] Recognizing recurrent neural networks (rRNN): Bayesian inference for recurrent neural networks
    Sebastian Bitzer
    Stefan J. Kiebel
    Biological Cybernetics, 2012, 106 : 201 - 217
  • [37] Recognizing recurrent neural networks (rRNN): Bayesian inference for recurrent neural networks
    Bitzer, Sebastian
    Kiebel, Stefan J.
    BIOLOGICAL CYBERNETICS, 2012, 106 (4-5) : 201 - 217
  • [38] Calibrated Approximate Bayesian Inference
    Xing, Hanwen
    Nicholls, Geoff K.
    Lee, Jeong Eun
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [39] Approximate Decentralized Bayesian Inference
    Campbell, Trevor
    How, Jonathan P.
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2014, : 102 - 111
  • [40] Approximate Bayesian inference for quantiles
    Dunson, DB
    Taylor, JA
    JOURNAL OF NONPARAMETRIC STATISTICS, 2005, 17 (03) : 385 - 400