Radio Number for Generalized Petersen Graphs P(n,2)

被引:0
|
作者
Zhang F. [1 ]
Nazeer S. [2 ]
Habib M. [3 ]
Zia T.J. [4 ]
Ren Z. [5 ]
机构
[1] School of Electron and Electricity Engineering, Baoji University of Arts and Sciences, Baoji
[2] Department of Mathematics, Lahore College for Women University, Lahore
[3] Department of Mathematics, University of Engineering and Technology Lahore, Lahore
[4] Department of Mathematics, COMSATS University of Islamabad at Lahore, Lahore
[5] Shaanxi Lingyun Electronics Group Company Ltd., Baoji
关键词
Diameter; generalized Petersen graph; radio number;
D O I
10.1109/ACCESS.2019.2943835
中图分类号
学科分类号
摘要
Let G be a connected graph and d(μ,ω) be the distance between any two vertices of G. The diameter of G is denoted by diam(G) and is equal to max{d(μ,ω); μ, ω ∈ G}. The radio labeling (RL) for the graph G is an injective function F : V(G) → N ∪ {0} such that for any pair of vertices μ and ω |F(μ) - F(ω)|≥ diam(G)-d(μ,ω)+1. The span of radio labeling is the largest number in F(V). The radio number of G, denoted by rn(G) is the minimum span over all radio labeling of G. In this paper, we determine radio number for the generalized Petersen graphs, P(n,2), n=4k+2. Further the lower bound of radio number for P(n,2) when n=4k is determined. © 2013 IEEE.
引用
收藏
页码:142000 / 142008
页数:8
相关论文
共 50 条
  • [21] On the cooling number of the generalized Petersen graphs
    Sim, Kai An
    Wong, Kok Bin
    AIMS MATHEMATICS, 2024, 9 (12): : 36351 - 36370
  • [22] The Independence Number for the Generalized Petersen Graphs
    Fox, Joseph
    Gera, Ralucca
    Stanica, Pantelimon
    ARS COMBINATORIA, 2012, 103 : 439 - 451
  • [23] Independence number of generalized Petersen graphs
    Besharati, Nazli
    Ebrahimi, J. B.
    Azadi, A.
    ARS COMBINATORIA, 2016, 124 : 239 - 255
  • [24] On the distance paired domination of generalized Petersen graphs P(n,1) and P(n,2)
    Wang, Haoli
    Xu, Xirong
    Yang, Yuansheng
    Lu, Kai
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2011, 21 (04) : 481 - 496
  • [25] On the cop number of generalized Petersen graphs
    Ball, Taylor
    Bell, Robert W.
    Guzman, Jonathan
    Hanson-Colvin, Madeleine
    Schonsheck, Nikolas
    DISCRETE MATHEMATICS, 2017, 340 (06) : 1381 - 1388
  • [26] The fibonacci number of generalized Petersen graphs
    Wagner, Stephan G.
    FIBONACCI QUARTERLY, 2006, 44 (04): : 362 - 367
  • [27] On the distance paired domination of generalized Petersen graphs P(n,1) and P(n,2)
    Haoli Wang
    Xirong Xu
    Yuansheng Yang
    Kai Lü
    Journal of Combinatorial Optimization, 2011, 21 : 481 - 496
  • [28] The exact domination number of generalized Petersen graphs P(n,k) with n = 2k and n = 2k + 2*
    Liu, Juan
    Zhang, Xindong
    Computational and Applied Mathematics, 2014, 33 (02) : 497 - 506
  • [29] The exact domination number of generalized Petersen graphs P(n, k) with n=2k and n=2k+2
    Liu, Juan
    Zhang, Xindong
    COMPUTATIONAL & APPLIED MATHEMATICS, 2014, 33 (02): : 497 - 506
  • [30] Italian Domination Number of Generalized Petersen Graph P(n, 1) and P(n, 2)
    Gao H.
    Huang J.
    Yin Y.
    Yang Y.
    Tongji Daxue Xuebao/Journal of Tongji University, 2021, 49 (05): : 751 - 758