Remote detection of marine debris using Sentinel-2 imagery: A cautious note on spectral interpretations

被引:21
|
作者
Hu C. [1 ]
机构
[1] University of South Florida, 140 Seventh Avenue, South, St. Petersburg, 33701, FL
基金
美国国家航空航天局; 美国海洋和大气管理局;
关键词
Floating matters; Marine litter; MSI; OLCI; Pixel unmixing; Plastics; Remote sensing; Sentinel-2; Spectroscopy;
D O I
10.1016/j.marpolbul.2022.114082
中图分类号
学科分类号
摘要
Remote detection of marine debris (also called marine litter) has received increased attention in the past decade, with the Multispectral Instruments (MSI) onboard the Sentinel-2A and Sentinel-2B satellites being the most used sensors. However, because of their mixed band resolutions and small sub-pixel coverage of debris within a pixel (e.g., <10 %), caution is required when interpreting the spectral shapes of MSI pixels. Otherwise, the spectrally distorted shapes may be misused as spectral endmembers (signatures) or interpreted as from certain types of floating matters. Here, using simulations and MSI data, I show the origin of the spectral distortions and emphasize why both pixel averaging and pixel subtraction are critical in algorithm design and spectral interpretation for the purpose of remote detection of marine debris using Sentinel-2 MSI sensors. © 2022 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [21] Estimation of lake ecological quality from Sentinel-2 remote sensing imagery
    Gary Free
    Mariano Bresciani
    Wayne Trodd
    Deirdre Tierney
    Shane O’Boyle
    Caroline Plant
    Jenny Deakin
    Hydrobiologia, 2020, 847 : 1423 - 1438
  • [22] A New Remote Sensing Index for the Detection of Multi-Type Forest Anomalies Based on Sentinel-2 Imagery
    Liang, Dalin
    Cao, Biao
    Wang, Qiao
    Qi, Jianbo
    Jia, Kun
    Zhao, Wenzhi
    Yan, Kai
    FORESTS, 2025, 16 (03):
  • [23] Mapping mangrove in Dongzhaigang, China using Sentinel-2 imagery
    Chen, Na
    JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (01)
  • [24] Quantifying Hail Damage in Crops Using Sentinel-2 Imagery
    Ha, Thuan
    Shen, Yanben
    Duddu, Hema
    Johnson, Eric
    Shirtliffe, Steven J.
    REMOTE SENSING, 2022, 14 (04)
  • [25] MAPPING AND MONITORING WETLANDS USING SENTINEL-2 SATELLITE IMAGERY
    Kaplan, G.
    Avdan, U.
    4TH INTERNATIONAL GEOADVANCES WORKSHOP - GEOADVANCES 2017: ISPRS WORKSHOP ON MULTI-DIMENSIONAL & MULTI-SCALE SPATIAL DATA MODELING, 2017, 4-4 (W4): : 271 - 277
  • [26] Estimation of forest cover change using Sentinel-2 multi-spectral imagery in Georgia (the Caucasus)
    Mikeladze, Giorgi
    Gavashelishvili, Alexander
    Akobia, Ilia
    Metreveli, Vasil
    IFOREST-BIOGEOSCIENCES AND FORESTRY, 2020, 13 : 329 - 335
  • [27] Evaluation of Semantic Segmentation Methods for Land Use with Spectral Imaging Using Sentinel-2 and PNOA Imagery
    Pedrayes, Oscar D.
    Lema, Dario G.
    Garcia, Daniel F.
    Usamentiaga, Ruben
    Alonso, Angela
    REMOTE SENSING, 2021, 13 (12)
  • [28] Glacier classification from Sentinel-2 imagery using spatial-spectral attention convolutional model
    Yan, Shuai
    Xu, Linlin
    Yu, Guojiang
    Yang, Longshan
    Yun, Wenju
    Zhu, Dehai
    Ye, Sijing
    Yao, Xiaochuang
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 102
  • [29] Trees outside forest in Italian agroforestry landscapes: detection and mapping using sentinel-2 imagery
    Sarti, Maurizio
    Ciolfi, Marco
    Lauteri, Marco
    Paris, Pierluigi
    Chiocchini, Francesca
    EUROPEAN JOURNAL OF REMOTE SENSING, 2021, 54 (01) : 609 - 623
  • [30] Change Detection of Amazonian Alluvial Gold Mining Using Deep Learning and Sentinel-2 Imagery
    Camalan, Seda
    Cui, Kangning
    Pauca, Victor Paul
    Alqahtani, Sarra
    Silman, Miles
    Chan, Raymond
    Plemmons, Robert Jame
    Dethier, Evan Nylen
    Fernandez, Luis E.
    Lutz, David A.
    REMOTE SENSING, 2022, 14 (07)