Remote detection of marine debris using Sentinel-2 imagery: A cautious note on spectral interpretations

被引:21
|
作者
Hu C. [1 ]
机构
[1] University of South Florida, 140 Seventh Avenue, South, St. Petersburg, 33701, FL
基金
美国海洋和大气管理局; 美国国家航空航天局;
关键词
Floating matters; Marine litter; MSI; OLCI; Pixel unmixing; Plastics; Remote sensing; Sentinel-2; Spectroscopy;
D O I
10.1016/j.marpolbul.2022.114082
中图分类号
学科分类号
摘要
Remote detection of marine debris (also called marine litter) has received increased attention in the past decade, with the Multispectral Instruments (MSI) onboard the Sentinel-2A and Sentinel-2B satellites being the most used sensors. However, because of their mixed band resolutions and small sub-pixel coverage of debris within a pixel (e.g., <10 %), caution is required when interpreting the spectral shapes of MSI pixels. Otherwise, the spectrally distorted shapes may be misused as spectral endmembers (signatures) or interpreted as from certain types of floating matters. Here, using simulations and MSI data, I show the origin of the spectral distortions and emphasize why both pixel averaging and pixel subtraction are critical in algorithm design and spectral interpretation for the purpose of remote detection of marine debris using Sentinel-2 MSI sensors. © 2022 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [1] Automated Marine Debris Detection from Sentinel-2 Satellite Imagery
    Priyadarshini, R.
    Arya, Varun
    Kamath, S. Sowmya
    2024 IEEE SPACE, AEROSPACE AND DEFENCE CONFERENCE, SPACE 2024, 2024, : 454 - 458
  • [2] MARIDA: A benchmark for Marine Debris detection from Sentinel-2 remote sensing data
    Kikaki, Katerina
    Kakogeorgiou, Ioannis
    Mikeli, Paraskevi
    Raitsos, Dionysios E. E.
    Karantzalos, Konstantinos
    PLOS ONE, 2022, 17 (01):
  • [3] Development of Novel Classification Algorithms for Detection of Floating Plastic Debris in Coastal Waterbodies Using Multispectral Sentinel-2 Remote Sensing Imagery
    Basu, Bidroha
    Sannigrahi, Srikanta
    Sarkar Basu, Arunima
    Pilla, Francesco
    REMOTE SENSING, 2021, 13 (08)
  • [4] Large-scale detection of marine debris in coastal areas with Sentinel-2
    Russwurm, Marc
    Venkatesa, Sushen Jilla
    Tuia, Devis
    ISCIENCE, 2023, 26 (12)
  • [5] EFFICIENT REMOTE SENSING TRANSFORMER FOR COASTLINE DETECTION WITH SENTINEL-2 SATELLITE IMAGERY
    Wang, Yuji
    Zhao, Ruojun
    Sun, Zijun
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5439 - 5442
  • [6] DETECTION OF CHANGES IN IMPERVIOUS SURFACE USING SENTINEL-2 IMAGERY
    Zhang, Yiming
    Skakun, Sergii
    Prudente, Victor
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4787 - 4790
  • [7] A Novel Spectral Index for Automatic Canola Mapping by Using Sentinel-2 Imagery
    Tian, Haifeng
    Chen, Ting
    Li, Qiangzi
    Mei, Qiuyi
    Wang, Shuai
    Yang, Mengdan
    Wang, Yongjiu
    Qin, Yaochen
    REMOTE SENSING, 2022, 14 (05)
  • [8] A Ship-Wake Joint Detection Using Sentinel-2 Imagery
    Jeon, Woojin
    Jin, Donghyun
    Seong, Noh-hun
    Jung, Daeseong
    Sim, Suyoung
    Woo, Jongho
    Byeon, Yugyeong
    Kim, Nayeon
    Han, Kyung-Soo
    KOREAN JOURNAL OF REMOTE SENSING, 2023, 39 (01) : 77 - 86
  • [9] Detection and Monitoring of Maltese Shoreline Changes using Sentinel-2 Imagery
    Fejjari, Asma
    Valentino, Gianluca
    Briffa, Johann A.
    D'Amico, Sebastiano
    2023 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR THE SEA; LEARNING TO MEASURE SEA HEALTH PARAMETERS, METROSEA, 2023, : 52 - 56
  • [10] Detection of Southern Beech Heavy Flowering Using Sentinel-2 Imagery
    Jolly, Ben
    Dymond, John R.
    Shepherd, James D.
    Greene, Terry
    Schindler, Jan
    REMOTE SENSING, 2022, 14 (07)