Beyond biomass production: Enhancing biodiversity while capturing carbon in short rotation coppice poplar plantations

被引:0
|
作者
Oliveira N. [1 ]
Cañellas I. [1 ]
Fuertes A. [1 ]
Pascual S. [2 ]
González I. [1 ]
Montes F. [1 ]
Sixto H. [1 ]
机构
[1] Institute of Forest Sciences (INIA, CSIC), Crta. de A Coruña km 7.5, Madrid
[2] Entomology Group, Plant Protection Department, INIA, CSIC, Ctra. de A Coruña km 7.5, Madrid
关键词
Carbon stored; Ecosystem services; Poplar short-rotation plantation; Populus; SRC; Sustainability;
D O I
10.1016/j.scitotenv.2024.172932
中图分类号
学科分类号
摘要
Biodiversity is essential for the functioning of ecosystems and the provision of services. In recent years, the role of plantations in mitigating climate change through carbon sequestration has been highlighted. In the Mediterranean area, high-density poplar plantations in short-rotation with resprouting management (SRC) have been established for biomass purposes on mostly irrigated agricultural land, coexisting with rainfed and irrigated agricultural crops. This study aims to assess the contribution of these plantations to this type of agroforest ecosystem in terms of biodiversity. For this purpose, both flora and fauna diversity were evaluated both within and outside of the plantation. Additionally, the accumulated carbon in the biomass, as well as in the accompanying vegetation within the plantation, was assessed. Different indices were used to evaluate both the intrinsic diversity of the forest plantation and the degree of substitution and complementarity between the different communities of the landscape. Our findings reveal distinct biodiversity patterns in the land-use scenarios sampled. Specifically, we observed significantly higher flora-species richness in SRC plantations than in the adjacent agricultural land, whereas fauna richness showed a similar but slightly higher level in the forested area. A moderate level of complementarity between land uses was found for insects and mammals (around 45 %), contrasting with high complementarity for birds (87 %) and flora (90 %). This suggests substantial turnover and replacement among these ecological environments. Our results indicate that a second rotation (4 year) plantation could accumulate a total of 61.6 Mg C ha−1, and even though adventitious flora represents <2 % of the total carbon accumulated, its importance in providing ecosystem services is considerable. Hence, these findings evidence the fact that SRC poplar plantations can enhance biodiversity in Mediterranean agroforest ecosystems and actively contribute to various provisioning ecosystem services, including carbon sequestration, reflecting a multi-objective approach that extends beyond biomass production. © 2024 The Authors
引用
收藏
相关论文
共 50 条
  • [21] On the Genetic Affinity of Individual Tree Biomass Allometry in Poplar Short Rotation Coppice
    N. Oliveira
    R. Rodríguez-Soalleiro
    C. Pérez-Cruzado
    I. Cañellas
    H. Sixto
    BioEnergy Research, 2017, 10 : 525 - 535
  • [22] Biomass and Volume Modeling along with Carbon Concentration Variations of Short-Rotation Poplar Plantations
    Dong, Lihu
    Widagdo, Faris Rafi Almay
    Xie, Longfei
    Li, Fengri
    FORESTS, 2020, 11 (07):
  • [23] The economic attractiveness of short rotation coppice biomass plantations for bioenergy in Northern Ontario
    Allen, Darren
    McKenney, Daniel W.
    Yemshanov, Denys
    Fraleigh, Saul
    FORESTRY CHRONICLE, 2013, 89 (01): : 66 - 78
  • [24] Production and Regression Models for Biomass and Carbon Captured in Gmelina arborea Roxb. Trees in Short Rotation Coppice Plantations in Costa Rica
    Tenorio, Carolina
    Moya, Roger
    Ortiz-Malavassi, Edgar
    Arias, Dagoberto
    FORESTS, 2019, 10 (07):
  • [25] Impact of RAV1-engineering on poplar biomass production: a short-rotation coppice field trial
    Alicia Moreno-Cortés
    José Manuel Ramos-Sánchez
    Tamara Hernández-Verdeja
    Pablo González-Melendi
    Ana Alves
    Rita Simões
    José Carlos Rodrigues
    Mercedes Guijarro
    Isabel Canellas
    Hortensia Sixto
    Isabel Allona
    Biotechnology for Biofuels, 10
  • [26] Impact of RAV1-engineering on poplar biomass production: a short-rotation coppice field trial
    Moreno-Cortes, Alicia
    Manuel Ramos-Sanchez, Jose
    Hernandez-Verdeja, Tamara
    Gonazlez-Melendi, Pablo
    Alves, Ana
    Simoes, Rita
    Carlos Rodrigues, Jose
    Guijarro, Mercedes
    Canellas, Isabel
    Sixto, Hortensia
    Allona, Isabel
    BIOTECHNOLOGY FOR BIOFUELS, 2017, 10
  • [27] Clonal variability in biomass production and conversion efficiency of poplar during the establishment year of a short rotation coppice plantation
    Deraedt, W
    Ceulemans, R
    BIOMASS & BIOENERGY, 1998, 15 (4-5): : 391 - 398
  • [28] Biomass production and fuel characteristics from long rotation poplar plantations
    Bohlenius, Henrik
    Ohman, Marcus
    Granberg, Fredrik
    Persson, Per-Ove
    BIOMASS & BIOENERGY, 2023, 178
  • [29] Morphological and physiological traits influencing biomass productivity in short-rotation coppice poplar
    Rae, AM
    Robinson, KM
    Street, NR
    Taylor, G
    CANADIAN JOURNAL OF FOREST RESEARCH, 2004, 34 (07) : 1488 - 1498
  • [30] Growth and production of a short rotation coppice culture of poplar I. Clonal differences in leaf characteristics in relation to biomass production
    Pellis , A
    Laureysens, I
    Ceulemans, R
    BIOMASS & BIOENERGY, 2004, 27 (01): : 9 - 19