Unlocking the performance degradation of vanadium-based cathodes in aqueous zinc-ion batteries

被引:2
|
作者
Li, Weijian [1 ,2 ]
Jiang, Weikang [1 ,3 ]
Zhu, Kaiyue [1 ,2 ]
Wang, Zhengsen [1 ,4 ]
Xie, Weili [1 ,2 ]
Yang, Hanmiao [1 ,2 ]
Ma, Manxia [1 ,3 ]
Yang, Weishen [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Univ Sci & Technol China, Dept Chem Phys, Hefei 230026, Anhui, Peoples R China
[4] Dalian Univ Technol, Dalian 116081, Peoples R China
关键词
Aqueous zinc-ion battery; Vanadium-based cathode; Capacity degradation; Zn-3(OH)(2)V2O7 center dot 2H(2)O; Dissolution mechanism; DISSOLUTION; LIFE;
D O I
10.1016/j.cej.2024.153786
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Vanadium-based materials stand out as promising cathode options for rechargeable aqueous zinc-ion batteries (ZIBs), primarily because of their high capacity and superior rate capability. Nevertheless, the utilization of vanadium-based cathodes in advancing ZIBs toward commercial viability is hindered by their insufficient stability and a notable lack of comprehension of the mechanisms driving capacity degradation. Herein, we identified the formation of Zn-3(OH)(2)V2O7 center dot 2H(2)O (ZOV) as a key contributor to the capacity decay of vanadium-based cathodes. Through a series of compelling experiments, we revealed that dissolved vanadium ions react with zinc salts or layered zinc hydroxide (formed from H+ insertion) during the immersion or cycling of vanadium-based cathodes in aqueous electrolytes, ultimately leading to the formation of detrimental ZOV. Strong evidence shows that ZOV is inactive for Zn2+ storage owing to the presence of the pure tetrahedral frameworks of vanadium. To suppress the formation of ZOV, adjustments were made to the electrolyte composition, including the solvents and solutes. Consequently, the absence of ZOV enables an impressive capacity retention of 85 % in the ZnSO4 electrolyte after 150 cycles at 0.2 Ag-1. Overall, this study directly unlocks the capacity decay mechanism in vanadium-based cathodes and offers valuable insights for the design of innovative electrolytes and novel vanadium-based cathode materials for ZIBs.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Recent Progresses on Vanadium Sulfide Cathodes for Aqueous Zinc-Ion Batteries
    Hu, Enze
    Li, Huifang
    Zhang, Yizhou
    Wang, Xiaojun
    Liu, Zhiming
    ENERGIES, 2023, 16 (02)
  • [22] Defected vanadium bronzes as superb cathodes in aqueous zinc-ion batteries
    Li, Jianwei
    Luo, Ningjing
    Wan, Feng
    Zhao, Siyu
    Li, Zhuangnan
    Li, Wenyao
    Guo, Jian
    Shearing, Paul R.
    Brett, Dan J. L.
    Carmalt, Claire J.
    Chai, Guoliang
    He, Guanjie
    Parkin, Ivan P.
    NANOSCALE, 2020, 12 (40) : 20638 - 20648
  • [23] Toward Low-Temperature Zinc-Ion Batteries: Strategy, Progress, and Prospect in Vanadium-Based Cathodes
    Jia, Lujie
    Hu, Hongfei
    Cheng, Xiaomin
    Dong, Hao
    Li, Huihua
    Zhang, Yongzheng
    Zhang, Huang
    Zhao, Xinyu
    Li, Canhuang
    Zhang, Jing
    Lin, Hongzhen
    Wang, Jian
    ADVANCED ENERGY MATERIALS, 2024, 14 (08)
  • [24] A facile strategy to unlock the high capacity of vanadium-based cathode for aqueous zinc-ion batteries
    Lin Gou
    Wentao Zhao
    Huan Li
    Xingjiang Liu
    Qiang Xu
    Journal of Solid State Electrochemistry, 2024, 28 : 113 - 123
  • [25] The degradation mechanism of vanadium oxide-based aqueous zinc-ion batteries
    Yang, Gongzheng
    Li, Qian
    Ma, Kaixuan
    Hong, Cheng
    Wang, Chengxin
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (16) : 8084 - 8095
  • [26] Recent advances of vanadium-based cathode materials for zinc-ion batteries
    Xuerong Li
    Haoyan Cheng
    Hao Hu
    Kunming Pan
    Tongtong Yuan
    Wanting Xia
    ChineseChemicalLetters, 2021, 32 (12) : 3753 - 3761
  • [27] Recent advances of vanadium-based cathode materials for zinc-ion batteries
    Li, Xuerong
    Cheng, Haoyan
    Hu, Hao
    Pan, Kunming
    Yuan, Tongtong
    Xia, Wanting
    CHINESE CHEMICAL LETTERS, 2021, 32 (12) : 3753 - 3761
  • [28] A facile strategy to unlock the high capacity of vanadium-based cathode for aqueous zinc-ion batteries
    Gou, Lin
    Zhao, Wentao
    Li, Huan
    Liu, Xingjiang
    Xu, Qiang
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2024, 28 (01) : 113 - 123
  • [29] Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes
    Wang, Lulu
    Huang, Kuo-Wei
    Chen, Jitao
    Zheng, Junrong
    SCIENCE ADVANCES, 2019, 5 (10)
  • [30] Development of vanadium oxides as cathodes in aqueous zinc-ion batteries: A mini review
    Jin, Hao
    Li, Rong
    Zhu, Limin
    Qiu, Xuejing
    Yang, Xinli
    Xie, Lingling
    Yi, Lanhua
    Cao, Xiaoyu
    ELECTROCHEMISTRY COMMUNICATIONS, 2024, 159