ITERATIVE SOLUTIONS OF SPLIT FIXED POINT AND MONOTONE INCLUSION PROBLEMS IN HILBERT SPACES

被引:0
|
作者
Mewomo O.T. [1 ]
Okeke C.C. [1 ,2 ]
Ogbuisi F.U. [1 ,2 ]
机构
[1] School of Mathematics, Statistics and Computer Science, University of Kwazulu-Natal, Durban
[2] DSI-NRF Center of Excellence in Mathematical and Statistical Sciences, Johannesburg
来源
基金
新加坡国家研究基金会;
关键词
Algorithm implementation; Demicontractive mapping; Equilibrium problem; Minimization problem; Monotone inclusion;
D O I
10.23952/jano.5.2023.2.06
中图分类号
学科分类号
摘要
Our purpose in this paper is to propose an iterative method involving a step-size selected in such a way that its implementation does not require the computation or an estimate of the spectral radius. Using our algorithm, we state and prove a strong convergence theorem of a common solution to a monotone inclusion problem and a fixed point problem of multi-valued Lipschitz hemicontractive-type mappings, whose image under a bounded linear operator is a fixed point of a demicontractive mapping. Our result generalizes some important and recent results in the literature. © 2023 Journal of Applied and Numerical Optimization.
引用
收藏
页码:271 / 285
页数:14
相关论文
共 50 条
  • [31] Generalized extragradient iterative methods for solving split feasibility and fixed point problems in Hilbert spaces
    P. Chuasuk
    A. Kaewcharoen
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [32] Generalized extragradient iterative methods for solving split feasibility and fixed point problems in Hilbert spaces
    Chuasuk, P.
    Kaewcharoen, A.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 114 (01)
  • [33] Solving Split Monotone Variational Inclusion Problem and Fixed Point Problem for Certain Multivalued Maps in Hilbert Spaces
    Ogbuisi, Ferdinard Udochukwu
    Mewomo, Oluwatosin Temitope
    THAI JOURNAL OF MATHEMATICS, 2021, 19 (02): : 503 - 520
  • [34] Iterative methods for the split common fixed point problem in Hilbert spaces
    Huanhuan Cui
    Fenghui Wang
    Fixed Point Theory and Applications, 2014
  • [35] Iterative methods for the split common fixed point problem in Hilbert spaces
    Cui, Huanhuan
    Wang, Fenghui
    FIXED POINT THEORY AND APPLICATIONS, 2014,
  • [36] ALGORITHMS FOR SPLIT COMMON FIXED POINT PROBLEMS IN HILBERT SPACES
    Zhao, J.
    Zong, H.
    Muangchoo, K.
    Kumam, P.
    Cho, Y. J.
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2018, 2 (03): : 273 - 286
  • [37] AN ITERATIVE ALGORITHM FOR THE SPLIT VARIATIONAL INCLUSION AND FIXED POINT PROBLEMS
    Yao, Yonghong
    Qin, Xiaowei
    Shahzad, Naseer
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (04) : 933 - 942
  • [38] Iterative Methods for Fixed Point Problems in Hilbert Spaces Preface
    Cegielski, Andrzej
    ITERATIVE METHODS FOR FIXED POINT PROBLEMS IN HILBERT SPACES, 2012, 2057 : IX - +
  • [39] Iterative Methods for Fixed Point Problems in Hilbert Spaces Introduction
    Cegielski, Andrzej
    ITERATIVE METHODS FOR FIXED POINT PROBLEMS IN HILBERT SPACES, 2012, 2057 : 1 - 38
  • [40] An iterative method with residual vectors for solving the fixed point and the split inclusion problems in Banach spaces
    Prasit Cholamjiak
    Suthep Suantai
    Pongsakorn Sunthrayuth
    Computational and Applied Mathematics, 2019, 38