Classifying sleep–wake stages through recurrent neural networks using pulse oximetry signals

被引:0
|
作者
Casal, Ramiro [1 ,3 ,4 ]
Di Persia, Leandro E. [2 ,3 ]
Schlotthauer, Gastón [1 ,3 ,4 ]
机构
[1] Laboratory of Signals and Nonlinear Dynamics, Faculty of Engineering, National University of Entre Ríos, Argentina
[2] Research Institute for Signals, Systems and Computational Intelligence, Faculty of Engineering and Water Sciences, National University of Litoral, Argentina
[3] National Council of Scientific and Technical Research (CONICET), Argentina
[4] Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - UNER - CONICET, Argentina
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Neural networks and wavelet analysis in the computer interpretation of pulse oximetry data
    Dowla, FU
    Skokowski, PG
    Leach, RR
    NEURAL NETWORKS FOR SIGNAL PROCESSING VI, 1996, : 527 - 536
  • [42] SlumberNet: deep learning classification of sleep stages using residual neural networks
    Pawan K. Jha
    Utham K. Valekunja
    Akhilesh B. Reddy
    Scientific Reports, 14
  • [43] SlumberNet: deep learning classification of sleep stages using residual neural networks
    Jha, Pawan K.
    Valekunja, Utham K.
    Reddy, Akhilesh B.
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [44] Pulse shape discrimination and exploration of scintillation signals using convolutional neural networks
    Griffiths, J.
    Kleinegesse, S.
    Saunders, D.
    Taylor, R.
    Vacheret, A.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2020, 1 (04):
  • [45] Using EMG signals to anticipate head motion via recurrent neural networks
    Hasanbelliu, E
    Barniv, Y
    Aguilar, M
    CISST '04: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON IMAGING SCIENCE, SYSTEMS, AND TECHNOLOGY, 2004, : 199 - 204
  • [46] Classification of transcranial Doppler signals using individual and ensemble recurrent neural networks
    Seera, Manjeevan
    Lim, Chee Peng
    Tan, Kay Sin
    Liew, Wei Shiung
    NEUROCOMPUTING, 2017, 249 : 337 - 344
  • [47] Automatic sleep stage recurrent neural classifier using energy features of EEG signals
    Hsu, Yu-Liang
    Yang, Ya-Ting
    Wang, Jeen-Shing
    Hsu, Chung-Yao
    NEUROCOMPUTING, 2013, 104 : 105 - 114
  • [48] Time Series Forecasting using Recurrent Neural Networks and Wavelet Reconstructed Signals
    Garcia-Pedrero, Angel
    Gomez-Gil, Pilar
    20TH INTERNATIONAL CONFERENCE ON ELECTRONICS COMMUNICATIONS AND COMPUTERS (CONIELECOMP 2010), 2010, : 169 - 173
  • [49] Classifying Learner Behavior from High Frequency Touchscreen Data Using Recurrent Neural Networks
    Pardos, Zachary A.
    Hu, Changran
    Meng, Pengqiu
    Neff, Michael
    Abrahamson, Dor
    UMAP'18: ADJUNCT PUBLICATION OF THE 26TH CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION, 2018, : 317 - 322
  • [50] Classifying vortex wakes using neural networks
    Colvert, Brendan
    Alsalman, Mohamad
    Kanso, Eva
    BIOINSPIRATION & BIOMIMETICS, 2018, 13 (02)