An empirical study of low-resource neural machine translation of manipuri in multilingual settings

被引:0
|
作者
Singh, Salam Michael [1 ]
Singh, Thoudam Doren [1 ]
机构
[1] Department of Computer Science and Engineering, National Institute of Technology Silchar, Assam, Silchar,788010, India
关键词
Computational linguistics - Computer aided language translation - Long short-term memory;
D O I
暂无
中图分类号
学科分类号
摘要
Machine translation requires a large amount of parallel data for a production level of translation quality. This is one of the significant factors behind the lack of machine translation systems for most spoken/written languages. Likewise, Manipuri is a low resource Indian language, and there is very little digital textual available data for the same. In this work, we attempt to address the low resource neural machine translation for Manipuri and English using other Indian languages in a multilingual setup. We train an LSTM based many-to-many multilingual neural machine translation system that is infused with cross-lingual features. Experimental results show that our method improves over the vanilla many-to-many multilingual and bilingual baselines for both Manipuri to/from English translation tasks. Furthermore, our method also improves over the vanilla many-to-many multilingual system for the translation task of all the other Indian languages to/from English. We also examine the generalizability of our multilingual model by evaluating the translation among the language pairs which do not have a direct link via the zero-shot translation and compare it against the pivot-based translation. © 2022, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.
引用
收藏
页码:14823 / 14844
相关论文
共 50 条
  • [21] A Strategy for Referential Problem in Low-Resource Neural Machine Translation
    Ji, Yatu
    Shi, Lei
    Su, Yila
    Ren, Qing-dao-er-ji
    Wu, Nier
    Wang, Hongbin
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2021, PT V, 2021, 12895 : 321 - 332
  • [22] Machine Translation in Low-Resource Languages by an Adversarial Neural Network
    Sun, Mengtao
    Wang, Hao
    Pasquine, Mark
    Hameed, Ibrahim A.
    APPLIED SCIENCES-BASEL, 2021, 11 (22):
  • [23] Language Model Prior for Low-Resource Neural Machine Translation
    Baziotis, Christos
    Haddow, Barry
    Birch, Alexandra
    PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 7622 - 7634
  • [24] Unsupervised Source Hierarchies for Low-Resource Neural Machine Translation
    Currey, Anna
    Heafield, Kenneth
    RELEVANCE OF LINGUISTIC STRUCTURE IN NEURAL ARCHITECTURES FOR NLP, 2018, : 6 - 12
  • [25] Low-Resource Neural Machine Translation: A Systematic Literature Review
    Yazar, Bilge Kagan
    Sahin, Durmus Ozkan
    Kilic, Erdal
    IEEE ACCESS, 2023, 11 : 131775 - 131813
  • [26] Meta-Learning for Low-Resource Neural Machine Translation
    Gu, Jiatao
    Wang, Yong
    Chen, Yun
    Cho, Kyunghyun
    Li, Victor O. K.
    2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 3622 - 3631
  • [27] Neural Machine Translation of Low-Resource and Similar Languages with Backtranslation
    Przystupa, Michael
    Abdul-Mageed, Muhammad
    FOURTH CONFERENCE ON MACHINE TRANSLATION (WMT 2019), VOL 3: SHARED TASK PAPERS, DAY 2, 2019, : 224 - 235
  • [28] Extremely low-resource neural machine translation for Asian languages
    Rubino, Raphael
    Marie, Benjamin
    Dabre, Raj
    Fujita, Atushi
    Utiyama, Masao
    Sumita, Eiichiro
    MACHINE TRANSLATION, 2020, 34 (04) : 347 - 382
  • [29] Survey of Low-Resource Machine Translation
    Haddow, Barry
    Bawden, Rachel
    Barone, Antonio Valerio Miceli
    Helcl, Jindrich
    Birch, Alexandra
    COMPUTATIONAL LINGUISTICS, 2022, 48 (03) : 673 - 732
  • [30] Fixing MoE Over-Fitting on Low-Resource Languages in Multilingual Machine Translation
    Elbayad, Maha
    Sun, Anna
    Bhosale, Shruti
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023), 2023, : 14237 - 14253