Traveling wave solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity

被引:0
|
作者
Zhu, Wenjing [1 ]
Xia, Yonghui [2 ]
Bai, Yuzhen [3 ]
机构
[1] School of Mathematics, China Jiliang University, Hangzhou,310018, China
[2] Department of Mathematics, Zhejiang Normal University, Jinhua,321004, China
[3] School of Mathematical Sciences, Qufu Normal University, Qufu, Shandong,273165, China
来源
关键词
72;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Bifurcations and the Exact Solutions of the Time-Space Fractional Complex Ginzburg-Landau Equation with Parabolic Law Nonlinearity
    Zhu, Wenjing
    Ling, Zijie
    Xia, Yonghui
    Gao, Min
    FRACTAL AND FRACTIONAL, 2023, 7 (02)
  • [42] Spatial and temporal feedback control of traveling wave solutions of the two-dimensional complex Ginzburg-Landau equation
    Postlethwaite, Claire M.
    Silber, Mary
    PHYSICA D-NONLINEAR PHENOMENA, 2007, 236 (01) : 65 - 74
  • [43] Bifurcations and exact solutions of the complex Ginzburg-Landau equation with Kudryashov's law
    Yu, Mengke
    Chen, Cailiang
    Zhang, Qiuyan
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2025,
  • [44] An investigation of fractional complex Ginzburg-Landau equation with Kerr law nonlinearity in the sense of conformable, beta and M-truncated derivatives
    Sadaf, Maasoomah
    Akram, Ghazala
    Dawood, Mirfa
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (04)
  • [45] Modulation instability of solutions to the complex Ginzburg-Landau equation
    Aleksic, Branislav N.
    Aleksic, Najdan B.
    Skarka, Vladimir
    Belic, Milivoj R.
    PHYSICA SCRIPTA, 2014, T162
  • [46] Solutions of the lowest order complex Ginzburg-Landau equation
    Yomba, E
    Kofané, TC
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 (04) : 1027 - 1032
  • [47] WEAK AND STRONG SOLUTIONS OF THE COMPLEX GINZBURG-LANDAU EQUATION
    DOERING, CR
    GIBBON, JD
    LEVERMORE, CD
    PHYSICA D, 1994, 71 (03): : 285 - 318
  • [48] On exact solutions of modified complex Ginzburg-Landau equation
    Yomba, E
    Kofané, TC
    PHYSICA D-NONLINEAR PHENOMENA, 1999, 125 (1-2) : 105 - 122
  • [49] Length scales in solutions of the complex Ginzburg-Landau equation
    Bartuccelli, MV
    Gibbon, JD
    Oliver, M
    PHYSICA D, 1996, 89 (3-4): : 267 - 286
  • [50] Bifurcating vortex solutions of the complex Ginzburg-Landau equation
    Kaper, HG
    Takác, P
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 1999, 5 (04) : 871 - 880