Hierarchical Contrastive Learning Enhanced Heterogeneous Graph Neural Network

被引:3
|
作者
Liu N. [1 ]
Wang X. [1 ]
Han H. [1 ]
Shi C. [1 ]
机构
[1] Beijing University of Posts and Telecommunications, Beijing Key Lab of Intelligent Telecommunications Software and Multimedia, Beijing
基金
中国国家自然科学基金;
关键词
Contrastive learning; heterogeneous graph neural network; heterogeneous information network;
D O I
10.1109/TKDE.2023.3264691
中图分类号
学科分类号
摘要
Heterogeneous graph neural networks (HGNNs) as an emerging technique have shown superior capacity of dealing with heterogeneous information network (HIN). However, most HGNNs follow a semi-supervised learning manner, which notably limits their wide use in reality since labels are usually scarce in real applications. Recently, contrastive learning, a self-supervised method, becomes one of the most exciting learning paradigms and shows great potential when there are no labels. In this paper, we study the problem of self-supervised HGNNs and propose a novel co-contrastive learning mechanism for HGNNs, named HeCo. Different from traditional contrastive learning which only focuses on contrasting positive and negative samples, HeCo employs cross-view contrastive mechanism. Specifically, two views of a HIN (network schema and meta-path views) are proposed to learn node embeddings, so as to capture both of local and high-order structures simultaneously. Then the cross-view contrastive learning, as well as a view mask mechanism, is proposed, which is able to extract the positive and negative embeddings from two views. This enables the two views to collaboratively supervise each other and finally learn high-level node embeddings. Moreover, to further boost the performance of HeCo, two additional methods are designed to generate harder negative samples with high quality. The essence of HeCo is to make positive samples from different views close to each other by cross-view contrast, and learn the factors invariant to two proposed views. However, besides the invariant factors, view-specific factors complementally provide the diverse structure information between different nodes, which also should be contained into the final embeddings. Therefore, we need to further explore each view independently and propose a modified model, called HeCo++. Specifically, HeCo++ conducts hierarchical contrastive learning, including cross-view and intra-view contrasts, which aims to enhance the mining of respective structures. Extensive experiments conducted on a variety of real-world networks show the superior performance of the proposed methods over the state-of-the-arts. © 1989-2012 IEEE.
引用
收藏
页码:10884 / 10896
页数:12
相关论文
共 50 条
  • [31] Node importance evaluation in heterogeneous network based on attention mechanism and graph contrastive learning
    Shu, Jian
    Zou, Yiling
    Cui, Hui
    Liu, Linlan
    NEUROCOMPUTING, 2025, 626
  • [32] Entropy Neural Estimation for Graph Contrastive Learning
    Ma, Yixuan
    Zhang, Xiaolin
    Zhang, Peng
    Zhan, Kun
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 435 - 443
  • [33] Neural Graph Similarity Computation with Contrastive Learning
    Hu, Shengze
    Zeng, Weixin
    Zhang, Pengfei
    Tang, Jiuyang
    APPLIED SCIENCES-BASEL, 2022, 12 (15):
  • [34] Heterogeneous Graph Contrastive Learning with Attention Mechanism for Recommendation
    Li, Ruxing
    Yang, Dan
    Gong, Xi
    ENGINEERING LETTERS, 2024, 32 (10) : 1930 - 1938
  • [35] Heterogeneous Graph Contrastive Multi-view Learning
    Wang, Zehong
    Li, Qi
    Yu, Donghua
    Han, Xiaolong
    Gao, Xiao-Zhi
    Shen, Shigen
    PROCEEDINGS OF THE 2023 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2023, : 136 - 144
  • [36] Disease Diagnosis Based on Heterogeneous Graph Contrastive Learning
    Yang, Chengyu
    Yang, Dan
    Gong, Xi
    ENGINEERING LETTERS, 2024, 32 (12) : 2200 - 2209
  • [37] Dual heterogeneous graph contrastive learning for QoS prediction
    Xiu, Yuting
    Ding, Ding
    Wu, Ziteng
    Zhao, Yuekun
    Liu, Jiaqi
    APPLIED INTELLIGENCE, 2025, 55 (07)
  • [38] Self-Supervised Heterogeneous Graph Neural Network Model Based on Collaborative Contrastive Learning of Topology Information and Attribute Information
    Li, Chao
    Sun, Guoyi
    Yan, Yeyu
    Duan, Hua
    Zeng, Qingtian
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2023, 36 (04): : 287 - 299
  • [39] Graph Contrastive Learning with Generative Adversarial Network
    Wu, Cheng
    Wang, Chaokun
    Xu, Jingcao
    Liu, Ziyang
    Zheng, Kai
    Wang, Xiaowei
    Song, Yang
    Gai, Kun
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 2721 - 2730
  • [40] Contrastive learning enhanced by graph neural networks for Universal Multivariate Time Series Representation
    Wang, Xinghao
    Xing, Qiang
    Xiao, Huimin
    Ye, Ming
    INFORMATION SYSTEMS, 2024, 125