Heterogeneous mission planning for a single unmanned aerial vehicle (UAV) with attention-based deep reinforcement learning

被引:0
|
作者
Jung M. [1 ]
Oh H. [1 ]
机构
[1] Mechanical Engineering, Ulsan National Institute of Science and Technology, Ulsan
基金
新加坡国家研究基金会;
关键词
Attention mechanism; Deep reinforcement learning; Mission planning; Neural networks; Vehicle routing problem;
D O I
10.7717/PEERJ-CS.1119
中图分类号
学科分类号
摘要
Large-scale and complex mission environments require unmanned aerial vehicles (UAVs) to deal with various types of missions while considering their operational and dynamic constraints. This article proposes a deep learning-based heterogeneous mission planning algorithm for a single UAV. We first formulate a heterogeneous mission planning problem as a vehicle routing problem (VRP). Then, we solve this by using an attention-based deep reinforcement learning approach. Attention-based neural networks are utilized as they have powerful computational efficiency in processing the sequence data for the VRP. For the input to the attention-based neural networks, the unified feature representation on heterogeneous missions is introduced, which encodes different types of missions into the same-sized vectors. In addition, a masking strategy is introduced to be able to consider the resource constraint (e.g., flight time) of the UAV. Simulation results show that the proposed approach has significantly faster computation time than that of other baseline algorithms while maintaining a relatively good performance. © Copyright 2022 Jung and Oh
引用
收藏
相关论文
共 50 条
  • [41] Application of Deep Learning Based Object Detection on Unmanned Aerial Vehicle
    Ipek, Burak
    Akpinar, Mustafa
    2020 5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2020, : 74 - 78
  • [42] Unmanned Aerial Vehicle Classification and Detection Based on Deep Transfer Learning
    Meng, Wei
    Tia, Meng
    2020 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND HUMAN-COMPUTER INTERACTION (ICHCI 2020), 2020, : 280 - 285
  • [43] Motion Planning for Unmanned Vehicle based on Hybrid Deep Learning
    Shi, Chaoxia
    Lan, Xiaogen
    Wang, Yanqing
    2017 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2017, : 473 - 478
  • [44] Attention-Based Deep Reinforcement Learning for Virtual Cinematography of 360° Videos
    Wang, Jianyi
    Xu, Mai
    Jiang, Lai
    Song, Yuhang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 3227 - 3238
  • [45] Deep Reinforcement Learning Based Computation Offloading in Heterogeneous MEC Assisted by Ground Vehicles and Unmanned Aerial Vehicles
    He, Hang
    Ren, Tao
    Cui, Meng
    Liu, Dong
    Niu, Jianwei
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, PT III, 2022, 13473 : 481 - 494
  • [46] Unmanned-Aerial-Vehicle-Assisted Computation Offloading for Mobile Edge Computing Based on Deep Reinforcement Learning
    Wang, Hui
    Ke, Hongchang
    Sun, Weijia
    IEEE ACCESS, 2020, 8 : 180784 - 180798
  • [47] Motion Planning by Reinforcement Learning for an Unmanned Aerial Vehicle in Virtual Open Space with Static Obstacles
    Kim, Sanghyun
    Park, Jongmin
    Yun, Jae-Kwan
    Seo, Jiwon
    2020 20TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2020, : 784 - 787
  • [48] Attention-based Deep Reinforcement Learning for Multi-view Environments
    Barati, Elaheh
    Chen, Xuewen
    Zhong, Zichun
    AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 1805 - 1807
  • [49] ATTENTION-BASED CURIOSITY-DRIVEN EXPLORATION IN DEEP REINFORCEMENT LEARNING
    Reizinger, Patrik
    Szemenyei, Marton
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3542 - 3546