GMIM: Self-supervised pre-training for 3D medical image segmentation with adaptive and hierarchical masked image modeling

被引:1
|
作者
Qi L. [1 ]
Jiang Z. [1 ,2 ]
Shi W. [1 ,2 ]
Qu F. [1 ]
Feng G. [1 ]
机构
[1] Department of Computer Science and Technology, Changchun University of Science and Technology, Jilin, Changchun
[2] Zhongshan Institute of Changchun University of Science and Technology, Guangzhou, Zhongshan
关键词
Brain tumor segmentation; Masked image modeling; Self-supervised learning;
D O I
10.1016/j.compbiomed.2024.108547
中图分类号
学科分类号
摘要
Self-supervised pre-training and fully supervised fine-tuning paradigms have received much attention to solve the data annotation problem in deep learning fields. Compared with traditional pre-training on large natural image datasets, medical self-supervised learning methods learn rich representations derived from unlabeled data itself thus avoiding the distribution shift between different image domains. However, nowadays state-of-the-art medical pre-training methods were specifically designed for downstream tasks making them less flexible and difficult to apply to new tasks. In this paper, we propose grid mask image modeling, a flexible and general self-supervised method to pre-train medical vision transformers for 3D medical image segmentation. Our goal is to guide networks to learn the correlations between organs and tissues by reconstructing original images based on partial observations. The relationships are consistent within the human body and invariant to disease type or imaging modality. To achieve this, we design a Siamese framework consisting of an online branch and a target branch. An adaptive and hierarchical masking strategy is employed in the online branch to (1) learn the boundaries or small contextual mutation regions within images; (2) to learn high-level semantic representations from deeper layers of the multiscale encoder. In addition, the target branch provides representations for contrastive learning to further reduce representation redundancy. We evaluate our method through segmentation performance on two public datasets. The experimental results demonstrate our method outperforms other self-supervised methods. Codes are available at https://github.com/mobiletomb/Gmim. © 2024 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [21] A Unified Visual Information Preservation Framework for Self-supervised Pre-Training in Medical Image Analysis
    Zhou, Hong-Yu
    Lu, Chixiang
    Chen, Chaoqi
    Yang, Sibei
    Yu, Yizhou
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (07) : 8020 - 8035
  • [22] Masked Text Modeling: A Self-Supervised Pre-training Method for Scene Text Detection
    Wang, Keran
    Xie, Hongtao
    Wang, Yuxin
    Zhang, Dongming
    Qu, Yadong
    Gao, Zuan
    Zhang, Yongdong
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 2006 - 2015
  • [23] GO-MAE: Self-supervised pre-training via masked autoencoder for OCT image classification of gynecology
    Wang, Haoran
    Guo, Xinyu
    Song, Kaiwen
    Sun, Mingyang
    Shao, Yanbin
    Xue, Songfeng
    Zhang, Hongwei
    Zhang, Tianyu
    NEURAL NETWORKS, 2025, 181
  • [24] A Closer Look at Invariances in Self-supervised Pre-training for 3D Vision
    Li, Lanxiao
    Heizmann, Michael
    COMPUTER VISION - ECCV 2022, PT XXX, 2022, 13690 : 656 - 673
  • [25] DeSD: Self-Supervised Learning with Deep Self-Distillation for 3D Medical Image Segmentation
    Ye, Yiwen
    Zhang, Jianpeng
    Chen, Ziyang
    Xia, Yong
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT IV, 2022, 13434 : 545 - 555
  • [26] Masked Autoencoder for Self-Supervised Pre-training on Lidar Point Clouds
    Hess, Georg
    Jaxing, Johan
    Svensson, Elias
    Hagerman, David
    Petersson, Christoffer
    Svensson, Lennart
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS (WACVW), 2023, : 350 - 359
  • [27] Self-supervised pre-training improves fundus image classification for diabetic retinopathy
    Lee, Joohyung
    Lee, Eung-Joo
    REAL-TIME IMAGE PROCESSING AND DEEP LEARNING 2022, 2022, 12102
  • [28] Advancing 3D medical image analysis with variable dimension transform based supervised 3D pre-training
    Zhang, Shu
    Li, Zihao
    Zhou, Hong-Yu
    Ma, Jiechao
    Yu, Yizhou
    NEUROCOMPUTING, 2023, 529 : 11 - 22
  • [29] Self-supervised Pre-training for Semantic Segmentation in an Indoor Scene
    Shrestha, Sulabh
    Li, Yimeng
    Kosecka, Jana
    2024 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS, WACVW 2024, 2024, : 625 - 635
  • [30] Self-Supervised Pre-Training for Deep Image Prior-Based Robust PET Image Denoising
    Onishi, Yuya
    Hashimoto, Fumio
    Ote, Kibo
    Matsubara, Keisuke
    Ibaraki, Masanobu
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2024, 8 (04) : 348 - 356