Network two-sample test for block models

被引:0
|
作者
Department of Statistics, UCLA, United States [1 ]
机构
来源
arXiv |
关键词
Adjacency matrix - Block modeling - Interpretability - Network distributions - Sample testing - Simple++ - Stochastic block models - Stochastic-modeling - Two-sample tests - Vertex correspondence;
D O I
暂无
中图分类号
学科分类号
摘要
45
引用
收藏
相关论文
共 50 条
  • [21] TWO-SAMPLE FUNCTIONAL LINEAR MODELS
    Xu, Wenchao
    Zhang, Riquan
    Liang, Hua
    STATISTICA SINICA, 2019, 29 (04) : 1891 - 1913
  • [22] Model-free two-sample test for network-valued data
    Lovato, Ilenia
    Pini, Alessia
    Stamm, Aymeric
    Vantini, Simone
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 144
  • [23] The score test for the two-sample occupancy model
    Karavarsamis, N.
    Guillera-Arroita, G.
    Huggins, R. M.
    Morgan, B. J. T.
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2020, 62 (01) : 94 - 115
  • [24] Two-Sample Hypothesis Test for Functional Data
    Zhao, Jing
    Feng, Sanying
    Hu, Yuping
    MATHEMATICS, 2022, 10 (21)
  • [25] A Kernel Two-Sample Test for Functional Data
    Wynne, George
    Duncan, Andrew B.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [26] An adjusted, asymmetric two-sample t test
    Balkin, SD
    Mallows, CL
    AMERICAN STATISTICIAN, 2001, 55 (03): : 203 - 206
  • [27] A two-sample nonparametric likelihood ratio test
    Marsh, Patrick
    JOURNAL OF NONPARAMETRIC STATISTICS, 2010, 22 (08) : 1053 - 1065
  • [28] Least-squares two-sample test
    Sugiyama, Masashi
    Suzuki, Taiji
    Itoh, Yuta
    Kanamori, Takafumi
    Kimura, Manabu
    NEURAL NETWORKS, 2011, 24 (07) : 735 - 751
  • [29] Dominance refinements of the Smirnov two-sample test
    Di Bucchianico, A
    Loeb, DE
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1998, 66 (01) : 51 - 60
  • [30] A Differentially Private Kernel Two-Sample Test
    Raj, Anant
    Law, Ho Chung Leon
    Sejdinovic, Dino
    Park, Mijung
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT I, 2020, 11906 : 697 - 724