Electrochemical characterization of Ti6Al4V components produced by additive manufacturing

被引:0
|
作者
Acquesta A. [1 ]
Carangelo A. [1 ]
Di Petta P. [2 ]
Monetta T. [1 ]
机构
[1] Dept. of Chemical Engineering, Materials and Industrial Production, University of Naples Federico II, Piazzale Tecchio 80, Napoli
[2] MBDA Missile System, via Fusaro 267, Bacoli, Napoli
来源
Key Engineering Materials | 2019年 / 813卷
关键词
Electrochemical characterization; Laser powder-bed fusion additive manufacturing; Microstructural analysis; Ti6Al4V alloy;
D O I
10.4028/www.scientific.net/KEM.813.86
中图分类号
学科分类号
摘要
The investigation of the corrosion resistance of Ti6Al4V alloy components produced by additive technology is still lacking in the literature. This paper aims to study the electrochemical behaviour of Ti6Al4V components fabricated by laser powder-bed fusion additive manufacturing process. The metallographic analysis was carried out by an optical microscope. The electrochemical behaviour has been evaluated in 3.5 wt. % of natural aerated NaCl aqueous solution by potentiodynamic polarization test. The results have been compared to a conventionally manufactured Ti6Al4V component. The typical martensitic structure has been shown by the additive manufactured sample. As expected, the metallographic analysis revealed a martensitic microstructure. The electrochemical tests carried out on the surface of the as-received additive manufactured specimen showed an influence of its morphology on the values of passive current density, higher than that recorded for the conventionally manufactured sample, used as control. After mechanical polishing, the electrochemical tests were repeated on the "bulk" of the samples. The open circuit potential values were higher than the value recorded for the conventionally manufactured sample. The conditions of the additive process affect the corrosion resistance of the components due to the roughness of the surface and to the microstructure created. © 2019 Trans Tech Publications Ltd, Switzerland.
引用
收藏
页码:86 / 91
页数:5
相关论文
共 50 条
  • [31] Characterization of Ti6Al4V–Ti6Al4V/30Ta Bilayer Components Processed by Powder Metallurgy for Biomedical Applications
    Jorge Chávez
    Omar Jiménez Alemán
    Martín Flores Martínez
    Héctor J. Vergara-Hernández
    Luis Olmos
    Pedro Garnica-González
    Didier Bouvard
    Metals and Materials International, 2020, 26 : 205 - 220
  • [32] Thermal oxidation of Ti6Al4V alloy: Microstructural and electrochemical characterization
    Kumar, Satendra
    Narayanan, T. S. N. Sankara
    Raman, S. Ganesh Sundara
    Seshadri, S. K.
    MATERIALS CHEMISTRY AND PHYSICS, 2010, 119 (1-2) : 337 - 346
  • [33] Additive Manufacturing of Ti-6Al-4V Alloy Components for Spacecraft Applications
    Rawal, Suraj
    Brantley, James
    Karabudak, Nafiz
    PROCEEDINGS OF 6TH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN SPACE TECHNOLOGIES (RAST 2013), 2013, : 5 - 11
  • [34] Laser stabilization of GMAW additive manufacturing of Ti-6Al-4V components
    Pardal, Goncalo
    Martina, Filomeno
    Williams, Stewart
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2019, 272 : 1 - 8
  • [35] Characterization of Laser Deposited Ti6Al4V/TiC Composite Powders on a Ti6Al4V Substrate
    Mahamood, R. M.
    Akinlabi, E. T.
    Shukla, M.
    Pityana, S.
    LASERS IN ENGINEERING, 2014, 29 (3-4) : 197 - 213
  • [36] Influence of additive manufacturing process parameters on Ti6Al4V surface properties and performances
    Yahyaoui, Houda
    Ben Moussa, Naoufel
    Habibi, Mohamed
    Ghanem, Farhat
    Mareau, Charles
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2025, : 5487 - 5498
  • [37] Controlling of residual stress in additive manufacturing of Ti6Al4V by finite element modeling
    Vastola, G.
    Zhang, G.
    Pei, Q. X.
    Zhang, Y. -W.
    ADDITIVE MANUFACTURING, 2016, 12 : 231 - 239
  • [38] On the Morphological Deviation in Additive Manufacturing of Porous Ti6Al4V Scaffold: A Design Consideration
    Naghavi, Seyed Ataollah
    Wang, Haoyu
    Varma, Swastina Nath
    Tamaddon, Maryam
    Marghoub, Arsalan
    Galbraith, Rex
    Galbraith, Jane
    Moazen, Mehran
    Hua, Jia
    Xu, Wei
    Liu, Chaozong
    MATERIALS, 2022, 15 (14)
  • [39] Wire arc additive manufacturing of Ti6AL4V using active interpass cooling
    School of Mechatronic Engineering, Foshan University, Foshan
    Guangdong, China
    不详
    不详
    Ningxia, China
    Mater Manuf Process, 2020, 7 (845-851): : 845 - 851
  • [40] Wire arc additive manufacturing of Ti6AL4V using active interpass cooling
    Ding, Donghong
    Wu, Bintao
    Pan, Zengxi
    Qiu, Zhijun
    Li, Huijun
    MATERIALS AND MANUFACTURING PROCESSES, 2020, 35 (07) : 845 - 851