Self-Supervised pre-training model based on Multi-view for MOOC Recommendation

被引:0
|
作者
Tian, Runyu [1 ]
Cai, Juanjuan [2 ]
Li, Chuanzhen [1 ,3 ]
Wang, Jingling [1 ]
机构
[1] Commun Univ China, Sch Informat & Commun Engn, Beijing 100024, Peoples R China
[2] Commun Univ China, State Key Lab Media Audio & Video, Minist Educ, Beijing, Peoples R China
[3] Commun Univ China, State Key Lab Media Convergence & Commun, Beijing, Peoples R China
基金
国家重点研发计划;
关键词
MOOC recommendation; Contrastive learning; Prerequisite dependency; Multi-view correlation;
D O I
10.1016/j.eswa.2024.124143
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recommendation strategies based on concepts of knowledge are gradually applied to personalized course recommendation to promote model learning from implicit feedback data. However, existing approaches typically overlook the prerequisite dependency between concepts, which is the significant basis for connecting courses, and they fail to effectively model the relationship between items and attributes of courses, leading to inadequate capturing of associations between data and ineffective integration of implicit semantics into sequence representations. In this paper, we propose S elf-Supervised pre-training model based on M ulti-view for M OOC R ecommendation (SSM4MR) that exploits non-explicit but inherently correlated features to guide the representation learning of users' course preferences. In particular, to keep the model from relying solely on course prediction loss and overmphasising on the final performance, we treat the concepts of knowledge, course items and learning paths as different views, then sufficiently model the intrinsic relevance among multi-view through formulating multiple specific self-supervised objectives. As such, our model enhances the sequence representation and ultimately achieves high-performance course recommendation. All the extensive experiments and analyses provide persuasive support for the superiority of the model design and the recommendation results.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Multi-view Self-supervised Heterogeneous Graph Embedding
    Zhao, Jianan
    Wen, Qianlong
    Sun, Shiyu
    Ye, Yanfang
    Zhang, Chuxu
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: RESEARCH TRACK, PT II, 2021, 12976 : 319 - 334
  • [32] Self-Supervised Deep Multi-View Subspace Clustering
    Sun, Xiukun
    Cheng, Miaomiao
    Min, Chen
    Jing, Liping
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 101, 2019, 101 : 1001 - 1016
  • [33] Self-supervised pre-training on industrial time-series
    Biggio, Luca
    Kastanis, Iason
    2021 8TH SWISS CONFERENCE ON DATA SCIENCE, SDS, 2021, : 56 - 57
  • [34] Self-supervised Pre-training for Semantic Segmentation in an Indoor Scene
    Shrestha, Sulabh
    Li, Yimeng
    Kosecka, Jana
    2024 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS, WACVW 2024, 2024, : 625 - 635
  • [35] Digging into Uncertainty in Self-supervised Multi-view Stereo
    Xu, Hongbin
    Zhou, Zhipeng
    Wang, Yali
    Kang, Wenxiong
    Sun, Baigui
    Li, Hao
    Qiao, Yu
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 6058 - 6067
  • [36] Self-Supervised Representations for Multi-View Reinforcement Learning
    Yang, Huanhuan
    Shi, Dianxi
    Xie, Guojun
    Peng, Yingxuan
    Zhang, Yi
    Yang, Yantai
    Yang, Shaowu
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 180, 2022, 180 : 2203 - 2213
  • [37] DiT: Self-supervised Pre-training for Document Image Transformer
    Li, Junlong
    Xu, Yiheng
    Lv, Tengchao
    Cui, Lei
    Zhang, Cha
    Wei, Furu
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 3530 - 3539
  • [38] Self-supervised Deep Correlational Multi-view Clustering
    Xin, Bowen
    Zeng, Shan
    Wang, Xiuying
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [39] A SELF-SUPERVISED PRE-TRAINING FRAMEWORK FOR VISION-BASED SEIZURE CLASSIFICATION
    Hou, Jen-Cheng
    McGonigal, Aileen
    Bartolomei, Fabrice
    Thonnat, Monique
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1151 - 1155
  • [40] Masked Feature Prediction for Self-Supervised Visual Pre-Training
    Wei, Chen
    Fan, Haoqi
    Xie, Saining
    Wu, Chao-Yuan
    Yuille, Alan
    Feichtenhofer, Christoph
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 14648 - 14658