Poststack Seismic Data Compression Using a Generative Adversarial Network

被引:0
|
作者
Ribeiro, Kevyn Swhants Dos Santos [1 ]
Schiavon, Ana Paula [1 ]
Navarro, Joao Paulo [2 ]
Vieira, Marcelo Bernardes [1 ]
Villela, Saulo Moraes [1 ]
E Silva, Pedro Mario Cruz [1 ]
机构
[1] Departamento de Ciência da Computação, UFJF - Universidade Federal de Juiz de Fora MG, Juiz de Fora, Brazil
[2] NVIDIA, São Paulo, Brazil
来源
IEEE Geoscience and Remote Sensing Letters | 2022年 / 19卷
关键词
Neural networks - Redundancy - Seismic waves - Decoding - Deep learning - Seismic response - Signal to noise ratio - Convolution - Data compression;
D O I
暂无
中图分类号
学科分类号
摘要
This work presents a method for volumetric seismic data compression by coupling a 3-D convolution-based autoencoder to a generative adversarial network (GAN). The main challenge of 3-D convolutional autoencoders for data compression is how to fully exploit volumetric redundancy while keeping reasonable latent representation dimensions. Our method is based on a convolutional neural network for seismic data compression called 3DSC. Its encoder and decoder use 3-D convolutions and are connected by a latent representation with the same dimensions as its 2-D network counterparts. Our main hypothesis is that the 3DSC architecture can be improved by adversarial training. We, thus, propose a new 3-D-based seismic data compression method (3DSC-GAN) by coupling the 3DSC network to a GAN. The seismic data decoder is used as a generator of poststack data that are integrated with a discriminator module to better exploit 3-D redundancy. Results show that our method outperforms previous seismic data compression methods for very low target bit rates, increasing the peak signal-to-noise ratio (PSNR) with fairly high visual quality. © 2004-2012 IEEE.
引用
收藏
相关论文
共 50 条
  • [21] Interpolating Seismic Data With Conditional Generative Adversarial Networks
    Oliveira, Dario A. B.
    Ferreira, Rodrigo S.
    Silva, Reinaldo
    Brazil, Emilio Vital
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (12) : 1952 - 1956
  • [22] Data Augmentation of High Frequency Financial Data Using Generative Adversarial Network
    Naritomi, Yusuke
    Adachi, Takanori
    2020 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY (WI-IAT 2020), 2020, : 641 - 648
  • [23] Generative adversarial network for image deblurring using generative adversarial constraint loss
    Ji, Y.
    Dai, Y.
    Zhao, K.
    Li, S.
    DEVELOPMENTS OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN COMPUTATION AND ROBOTICS, 2020, 12 : 1180 - 1187
  • [24] Defeating data hiding in social networks using generative adversarial network
    Huaqi Wang
    Zhenxing Qian
    Guorui Feng
    Xinpeng Zhang
    EURASIP Journal on Image and Video Processing, 2020
  • [25] Data Augmentation Using Generative Adversarial Network for Environmental Sound Classification
    Madhu, Aswathy
    Kumaraswamy, Suresh
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [26] SolarGAN: Multivariate Solar Data Imputation Using Generative Adversarial Network
    Zhang, Wenjie
    Luo, Yonghong
    Zhang, Ying
    Srinivasan, Dipti
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2021, 12 (01) : 743 - 746
  • [27] Defeating data hiding in social networks using generative adversarial network
    Wang, Huaqi
    Qian, Zhenxing
    Feng, Guorui
    Zhang, Xinpeng
    EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2020, 2020 (01)
  • [28] Data Augmentation of Thyroid Ultrasound Images Using Generative Adversarial Network
    Liang, Junzhao
    Chen, Junying
    INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS 2021), 2021,
  • [29] A generative adversarial network for travel times imputation using trajectory data
    Zhang, Kunpeng
    He, Zhengbing
    Zheng, Liang
    Zhao, Liang
    Wu, Lan
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2021, 36 (02) : 197 - 212
  • [30] Generative Adversarial Network for Data Augmentation and Substitution
    Stankovic, Marko
    Bacanin, Nebojsa
    Zivkovic, Miodrag
    Jovanovic, Luka
    Sarac, Marko
    Antonijevic, Milos
    2024 ZOOMING INNOVATION IN CONSUMER TECHNOLOGIES CONFERENCE, ZINC 2024, 2024, : 7 - 12