Numerical simulation of creep notched bar of P91 steel

被引:0
|
作者
Ab Razak, N. [1 ]
Davies, C.M. [2 ]
机构
[1] Universiti Malaysia Pahang, Malaysia
[2] Imperial College London, United Kingdom
来源
Frattura ed Integrita Strutturale | 2022年 / 16卷 / 62期
关键词
Creep; -; Ductility;
D O I
暂无
中图分类号
学科分类号
摘要
Numerous components designed for use at elevated temperatures now exhibit multiaxial stress states as a result of geometric modification and material inhomogeneity. It is necessary to anticipate the creep rupture life of such components when subjected to multiaxial load. In this work finite element analysis has been performed to study the influence of different notches, namely blunt and medium notches on the stress distribution across the notch throat during the creep exposure. Within the FE model, a ductility exhaustion model based on the Cocks and Ashby model was utilized to forecast the creep rupture time of notched bar P91 material. The lower and upper bound of creep ductility are employed in the FE analysis. Different notch specimens have different stress and damage distribution. It is shown that for both types of notches, the von Mises stress is lower than the net stress, indicating the notch strengthening effect. The accumulation of creep damage in the minimum cross-section at each element across the notch throat increases over time. The point at which damage first occurs is closer to the notch root for the medium notch than for the blunt notch. The long-term rupture life predicted for blunt notch specimens appears to be comparable to that of uniaxial specimens. The upper bound creep ductility better predicts the rupture life for medium notches. © 2022 N. Ab Razak.
引用
收藏
页码:261 / 270
相关论文
共 50 条
  • [21] Effect of Boron Addition on Creep Strain during Impression Creep of P91 Steel
    Akhil Khajuria
    Rajneesh Kumar
    Raman Bedi
    Journal of Materials Engineering and Performance, 2019, 28 : 4128 - 4142
  • [22] Microstructure and creep rupture strength of welded joints in the steel P91
    Purmensky, Jaroslav
    Foldyna, Vaclav
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE 2007, VOL 9, 2008, : 503 - 511
  • [23] An Empirical Approach to Analyze Creep Rupture Behavior of P91 Steel
    Aslam, Muhammad Junaid
    Gur, Cemil Hakan
    KOREAN JOURNAL OF MATERIALS RESEARCH, 2021, 31 (05): : 255 - 263
  • [24] Creep resistance of similar and dissimilar weld joints of P91 steel
    Jandova, Dagmar
    Kasl, Josef
    Kanta, Vaclav
    MATERIALS AT HIGH TEMPERATURES, 2006, 23 (3-4) : 165 - 170
  • [25] A Hardness-Normalised Model of Creep Rupture for P91 Steel
    Allen, David J.
    CREEP & FRACTURE IN HIGH TEMPERATURE COMPONENTS: DESIGN & LIFE ASSESSMENT ISSUES, PROCEEDINGS, 2009, : 659 - 668
  • [26] Impression creep test of a P91 steel: a round robin programme
    Brett, S. J.
    Dyson, C. N. C.
    Purdy, D.
    Shingledecker, J.
    Rantala, J.
    Eaton-Mckay, J.
    Sun, W.
    MATERIALS AT HIGH TEMPERATURES, 2018, 35 (06) : 529 - 534
  • [27] Effect of Boron Addition on Creep Strain during Impression Creep of P91 Steel
    Khajuria, Akhil
    Kumar, Rajneesh
    Bedi, Raman
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2019, 28 (07) : 4128 - 4142
  • [28] Influence of Substructure on Creep Failure of P91 Steel Weld Joints
    Jandova, Dagmar
    Kasl, Josef
    Kanta, Vaclav
    CREEP & FRACTURE IN HIGH TEMPERATURE COMPONENTS: DESIGN & LIFE ASSESSMENT ISSUES, PROCEEDINGS, 2009, : 177 - 188
  • [29] Creep Properties and Life Estimation of P91 Steel with low Hardness
    Niu, Yujing
    Cai, Hongsheng
    Geng, Jinfeng
    Ma, Dongfang
    Ma, Guodong
    Zhao, Yongfeng
    Yang, Xu
    MATERIALS, MECHANICAL AND MANUFACTURING ENGINEERING, 2014, 842 : 201 - +
  • [30] Microstructural changes in creep exposed P91 steel weld joint
    Jandova, Dagmar
    Kasl, Josef
    MATERIALS AT HIGH TEMPERATURES, 2011, 28 (02) : 137 - 146