Infiltrated nano-CeO2 and inserted Ni-Fe active layer in a tubular cathode substrate for high temperature CO2 electrolysis on solid oxide cells using La0.9Sr0.1Ga0.8Mg0.2O3−δ thin film electrolyte

被引:0
|
作者
Tan, Zhe [1 ,2 ]
Ishihara, Tatsumi [1 ,2 ]
机构
[1] Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka,819-0395, Japan
[2] International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka,819-0395, Japan
关键词
Anodes - Binary alloys - Carbon dioxide - Cathodes - Deposition - Electrolysis - Gallium compounds - Iron oxides - Lanthanum compounds - Nanoparticles - Nickel oxide - Oxidation - Samarium compounds - Solid electrolytes - Solid oxide fuel cells (SOFC) - Strontium compounds - Yttria stabilized zirconia - Yttrium oxide;
D O I
暂无
中图分类号
学科分类号
摘要
A tubular type solid oxide cell which consists of a NiO-Y2O3 stabilized ZrO2 (YSZ) tubular cathode substrate, a La0.9Sr0.1Ga0.8Mg0.2O3−δ (LSGM) electrolyte film and a Sm0.5Sr0.5CoO3-δ (SSC) anode was prepared by dip-coating for CO2 electrolysis at 800 °C. Since Ni in Ni-YSZ substrate is easily re-oxidized under a pure CO2 electrolysis atmosphere, co-feeding a reductive gas was essential for avoiding Ni re-oxidation and achieving a stable and large CO2 electrolysis current under high temperature operation. It was found that co-feeding H2 is more effective for preventing re-oxidation of Ni compared with CO, however, the CO formation rate was slightly lower than that estimated amount by Faraday`s law due to a water shift reaction when H2 was used as a reductive gas. Deposition of a thin Ni-Fe cathode active layer and CeO2 nano-particles obtained by infiltration were effective for increasing the CO2 electrolysis current because of the decrease in the cathodic overpotential. In spite of the low concentration of Ce was infiltrated by using a 1 M solution with a dip process, the volume change in substrate caused by the CO2 oxidant was also measured. The CO formation rate almost corresponded to the amount estimated by Faraday`s law and the coke deposition was hardly observed in Ni-YSZ substrate after CO2 electrolysis, when 10% or 5% of CO was co-fed. © 2022
引用
收藏
相关论文
共 50 条
  • [31] Infiltrated Sr2Fe1.5Mo0.5O6/La0.9Sr0.1Ga0.8Mg0.2O3 electrodes towards high performance symmetrical solid oxide fuel cells fabricated by an ultra-fast and time-saving procedure
    Liu, Juan
    Lei, Yu
    Li, Yumei
    Gao, Jun
    Han, Da
    Zhan, Weiting
    Huang, Fuqiang
    Wang, Shaorong
    ELECTROCHEMISTRY COMMUNICATIONS, 2017, 78 : 6 - 10
  • [32] High-power SOFC using La0.9Sr0.1Ga0.8Mg0.2O3-δ/Ce0.8Sm0.2O2-δ composite film
    Yan, JW
    Matsumoto, H
    Enoki, M
    Ishihara, T
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (08) : A389 - A391
  • [33] Efficient CO2 electroreduction on a solid oxide electrolysis cell with La0.6Sr0.4Co0.2Fe0.8O3-δ-Gd0.2Ce0.8O2-δ infiltrated electrode
    Huang, Zhidong
    Qi, Huiying
    Zhao, Zhe
    Shang, Lei
    Tu, Baofeng
    Cheng, Mojie
    JOURNAL OF POWER SOURCES, 2019, 434
  • [34] Effect of sintering temperature on the performance of composite La0.6Sr0.4Co0.2Fe0.8O3-Ce0.9Gd0.1O2 cathode for solid oxide fuel cells
    Solovyev, A. A.
    Ionov, I. V.
    Shipilova, A. V.
    Maloney, P. D.
    JOURNAL OF ELECTROCERAMICS, 2018, 40 (02) : 150 - 155
  • [35] Operational Inhomogeneities in La0.9Sr0.1Ga0.8Mg0.2O3-δ Electrolytes and La0.8Sr0.2Cr0.82Ru0.18O3-δ-Ce0.9Gd0.1O2-δ Composite Anodes for Solid Oxide Fuel Cells
    Liao, Y.
    Bierschenk, D. M.
    Barnett, S. A.
    Marks, L. D.
    FUEL CELLS, 2011, 11 (05) : 635 - 641
  • [36] High-performance, stable buffer-layer-free La0.9Sr0.1Ga0.8Mg0.2O3 electrolyte-supported solid oxide cell with a nanostructured nickel-based hydrogen electrode
    Qian, Jiaqi
    Lin, Changgen
    Chen, Zhiyi
    Huang, Jiongyuan
    Ai, Na
    Jiang, San Ping
    Zhou, Xiaoliang
    Wang, Xin
    Shao, Yanqun
    Chen, Kongfa
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2024, 346
  • [37] A High Power Density Intermediate-Temperature Solid Oxide Fuel Cell with Thin (La0.9Sr0.1)0.98(Ga0.8Mg0.2)O3-δ Electrolyte and Nano-Scale Anode
    Gao, Zhan
    Miller, Elizabeth C.
    Barnett, Scott A.
    ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (36) : 5703 - 5709
  • [38] Direct Electrolysis of CO2 in Symmetrical Solid Oxide Electrolysis Cell Based on La0.6Sr0.4Fe0.8Ni0.2O3-δ Electrode
    Tian, Yunfeng
    Zheng, Haoyu
    Zhang, Lingling
    Chi, Bo
    Pu, Jian
    Li, Jian
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (02) : F17 - F23
  • [39] Effect of sintering temperature on the performance of composite La0.6Sr0.4Co0.2Fe0.8O3–Ce0.9Gd0.1O2 cathode for solid oxide fuel cells
    A. A. Solovyev
    I. V. Ionov
    A. V. Shipilova
    P. D. Maloney
    Journal of Electroceramics, 2018, 40 : 150 - 155
  • [40] A comparison study of chromium deposition and poisoning on La0.8Sr0.2Ga0.8Mg0.2O3-δ and Gd0.1Ce0.9O2-δ electrolytes of solid oxide fuel cells
    Zhao, Ling
    Cui, Yuexiao
    Gui, Liangqi
    Li, Geng
    He, Beibei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 688 : 376 - 381