Learning test-time augmentation for content-based image retrieval

被引:1
|
作者
Tursun O. [1 ]
Denman S. [1 ]
Sridharan S. [1 ]
Fookes C. [1 ]
机构
[1] Signal Processing, Artificial Intelligence and Vision Technologies (SAIVT), Queensland University of Technology
关键词
Data augmentation; Image retrieval; Reinforcement learning; Test time augmentation;
D O I
10.1016/j.cviu.2022.103494
中图分类号
学科分类号
摘要
Off-the-shelf convolutional neural network features achieve outstanding results in many image retrieval tasks. However, their invariance to target data is pre-defined by the network architecture and training data. Existing image retrieval approaches require fine-tuning or modification of pre-trained networks to adapt to variations unique to the target data. In contrast, our method enhances the invariance of off-the-shelf features by aggregating features extracted from images augmented at test-time, with augmentations guided by a policy learned through reinforcement learning. The learned policy assigns different magnitudes and weights to the selected transformations, which are selected from a list of image transformations. Policies are evaluated using a metric learning protocol to learn the optimal policy. The model converges quickly and the cost of each policy iteration is minimal as we propose an off-line caching technique to greatly reduce the computational cost of extracting features from augmented images. Experimental results on large trademark retrieval (METU trademark dataset) and landmark retrieval (ROxford5k and RParis6k scene datasets) tasks show that the learned ensemble of transformations is highly effective for improving performance, and is practical, and transferable. © 2022
引用
收藏
相关论文
共 50 条
  • [41] CONTENT-BASED VESSEL IMAGE RETRIEVAL
    Mukherjee, Satabdi
    Cohen, Samuel
    Gertner, Izidor
    AUTOMATIC TARGET RECOGNITION XXVI, 2016, 9844
  • [42] Content-based image retrieval methods
    N. S. Vassilieva
    Programming and Computer Software, 2009, 35 : 158 - 180
  • [43] Content-based image and video retrieval
    Vasconcelos, N
    SIGNAL PROCESSING, 2005, 85 (02) : 231 - 232
  • [44] Faceted content-based image retrieval
    Amato, Giuseppe
    Meghini, Carlo
    DEXA 2008: 19TH INTERNATIONAL CONFERENCE ON DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2008, : 402 - 406
  • [45] Content-Based Image Retrieval Research
    Duan, Guoyong
    Yang, Jing
    Yang, Yilong
    2011 INTERNATIONAL CONFERENCE ON PHYSICS SCIENCE AND TECHNOLOGY (ICPST), 2011, 22 : 471 - 477
  • [46] A new content-based image retrieval
    Zhang, Zhen-Hua
    Quan, Yong
    Li, Wen-Hui
    Guo, Wu
    PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2006, : 4013 - +
  • [47] Content-based image retrieval with WISFC
    Zhang, H. (guwenjiao1989@126.com), 1600, Binary Information Press (10):
  • [48] Prefetching for content-based image retrieval
    Yoon, J
    Jayant, N
    IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL I AND II, PROCEEDINGS, 2002, : A413 - A416
  • [49] Content-based ultrasound image retrieval
    Kwak, DM
    Kim, BS
    Park, CH
    Kim, SJ
    Kim, YM
    Park, KH
    METMBS'01: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICS AND ENGINEERING TECHNIQUES IN MEDICINE AND BIOLOGICAL SCIENCES, 2001, : 512 - 517
  • [50] Content-based image retrieval - A survey
    Choras, Ryszard S.
    BIOMETRICS, COMPUTER SECURITY SYSTEMS AND ARTIFICIAL INTELLIGENCE APPLICATIONS, 2006, : 31 - 44