Forecasting the international air passengers of Iran using an artificial neural network

被引:2
|
作者
Nourzadeh F. [1 ]
Ebrahimnejad S. [2 ]
Khalili-Damghani K. [1 ]
Hafezalkotob A. [1 ]
机构
[1] Department of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran
[2] Department of Industrial Engineering, Karaj Branch, Islamic Azad University, P.O. Box 31485/313, Karaj
关键词
Air passenger demand; ANN; Artificial neural network; Forecasting; Iran; Training algorithm;
D O I
10.1504/IJISE.2020.106089
中图分类号
学科分类号
摘要
Forecasting passenger demand is generally viewed as the most crucial function of airline management. In order to organise the air passengers entering Iran, in this study, the number of international air passengers entering Iran in 2020 has been forecast using an artificial neural network. For this purpose, first, countries that have a similar status to Iran on some indicators, have been recognised by using 11 indices. Afterward, the number of their air passengers has been forecast by using various training algorithms. Then, the number of international passengers entering Iran has been forecast using the weighted average and similarity percentage of other countries in defined indices. It should be noted that training algorithms for countries have been chosen based on experimental error, and the prediction accuracy has been set at 99% of confidence interval. Comparison of the results obtained from present study and other studies shows high accuracy of the proposed approach. Copyright © 2020 Inderscience Enterprises Ltd.
引用
收藏
页码:562 / 581
页数:19
相关论文
共 50 条
  • [31] Oil Consumption Forecasting in Turkey using Artificial Neural Network
    Turanoglu, Ebru
    Senvar, Ozlem
    Kahraman, Cengiz
    INTERNATIONAL JOURNAL OF ENERGY OPTIMIZATION AND ENGINEERING, 2012, 1 (04) : 89 - 105
  • [32] ELECTRIC-LOAD FORECASTING USING AN ARTIFICIAL NEURAL NETWORK
    PARK, DC
    ELSHARKAWI, MA
    MARKS, RJ
    ATLAS, LE
    DAMBORG, MJ
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1991, 6 (02) : 442 - 449
  • [33] Oil demand forecasting for India using artificial neural network
    Jebaraj, S.
    Iniyan, S.
    INTERNATIONAL JOURNAL OF GLOBAL ENERGY ISSUES, 2015, 38 (4-6) : 322 - 341
  • [34] Streamflow forecasting using different artificial neural network algorithms
    Kisi, Oezguer
    JOURNAL OF HYDROLOGIC ENGINEERING, 2007, 12 (05) : 532 - 539
  • [35] Short term load forecasting using artificial neural network
    Banda, E.
    Folly, K. A.
    2007 IEEE LAUSANNE POWERTECH, VOLS 1-5, 2007, : 108 - 112
  • [36] Forecasting watermain failure using artificial neural network modelling
    Asnaashari, Ahmad
    McBean, Edward A.
    Gharabaghi, Bahram
    Tutt, Donald
    CANADIAN WATER RESOURCES JOURNAL, 2013, 38 (01) : 24 - 33
  • [37] Forecasting Paint Products Using Artificial Neural Network Algorithm
    Hadiansyah, A.
    Sumitra, I. D.
    2ND INTERNATIONAL CONFERENCE ON INFORMATICS, ENGINEERING, SCIENCE, AND TECHNOLOGY (INCITEST 2019), 2019, 662
  • [38] Short Term Load Forecasting Using Artificial Neural Network
    Singh, Saurabh
    Hussain, Shoeb
    Bazaz, Mohammad Abid
    2017 FOURTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP), 2017, : 159 - 163
  • [39] Artificial neural network for tsunami forecasting
    Romano, Michele
    Liong, Shie-Yui
    Vu, Minh Tue
    Zemskyy, Pavlo
    Doan, Chi Dung
    Dao, My Ha
    Tkalich, Pavel
    JOURNAL OF ASIAN EARTH SCIENCES, 2009, 36 (01) : 29 - 37
  • [40] Short term load forecasting using artificial neural networks for the west of Iran
    Department of Electrical Engineering, Faculty of Engineering, Razi University, Tagh-e-Bostan, Kermanshah-67149, Iran
    J. Appl. Sci., 2007, 12 (1582-1588):