DIMENSIONAL REDUCTION FOR MULTIVARIATE LAGRANGE POLYNOMIAL INTERPOLATION PROBLEMS

被引:0
|
作者
Errachid M. [1 ]
Essanhaji A. [1 ]
Messaoudi A.A. [2 ]
机构
[1] LabMIA-SI, Mohammed V University in Rabat, Centre Régional des Métiers de l’Enseignement et de la Formation (CRMEF) de Rabat, 1 Avenue Allal Alfassi, Madinat Al Irfane, B.P. 6210, Rabat
[2] LabMIA-SI, Mohammed V University in Rabat, Ecole Normale Supérieure, Av. Mohammed Belhassan El Ouazzani, Takaddoum, Rabat
关键词
polynomial interpolation; multivariate Lagrange polynomial interpolation problem;
D O I
10.1553/etna_vol60s123
中图分类号
学科分类号
摘要
In this work we propose a theoretical and practical method to transform the multivariate Lagrange polynomial interpolation problem into a univariate problem. This transformation allows a wide exploitation of all one-variable polynomial Lagrange interpolation schemes such as Newton’s scheme or split differences, etc. Numerical comparison with other existing methods will be studied. © 2024 Kent State University. All rights reserved.
引用
收藏
页码:123 / 135
页数:12
相关论文
共 50 条
  • [21] MULTIVARIATE DIVIDED DIFFERENCES AND MULTIVARIATE INTERPOLATION OF LAGRANGE AND HERMITE TYPE
    HAKOPIAN, H
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1981, 292 (08): : 453 - 456
  • [22] Intertwining unisolvent arrays for multivariate Lagrange interpolation
    Jean-Paul Calvi
    Advances in Computational Mathematics, 2005, 23 : 393 - 414
  • [23] On the continuity of multivariate Lagrange interpolation at natural lattices
    Calvi, J. -P.
    Phung, V. M.
    LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2013, 16 : 45 - 60
  • [24] Intertwining unisolvent arrays for multivariate Lagrange interpolation
    Calvi, JP
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2005, 23 (04) : 393 - 414
  • [25] Multivariate polynomial interpolation on lower sets
    Dyn, Nira
    Floater, Michael S.
    JOURNAL OF APPROXIMATION THEORY, 2014, 177 : 34 - 42
  • [26] On some aspects of multivariate polynomial interpolation
    A. Le Méhauté
    Advances in Computational Mathematics, 2000, 12 : 311 - 333
  • [27] Quantum algorithm for multivariate polynomial interpolation
    Chen, Jianxin
    Childs, AndrewM.
    Hung, Shih-Han
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2209):
  • [28] On some aspects of multivariate polynomial interpolation
    Le Méhauté, A
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2000, 12 (04) : 311 - 333
  • [29] Multivariate polynomial interpolation with perturbed data
    Claudia Fassino
    Hans Michael Möller
    Numerical Algorithms, 2016, 71 : 273 - 292
  • [30] Multivariate Polynomial Interpolation in Newton Forms
    Neidinger, Richard D.
    SIAM REVIEW, 2019, 61 (02) : 361 - 381