Formal methods enhance deep learning for smart cities: Challenges and future directions

被引:0
|
作者
Ma, Meiyi [1 ]
机构
[1] Department of Computer Science, Vanderbilt University, United States
来源
XRDS: Crossroads | 2022年 / 28卷 / 03期
关键词
Deep learning - Smart city;
D O I
10.1145/3522694
中图分类号
学科分类号
摘要
Rigorous approaches based on formal methods have the potential to fundamentally improve many aspects of deep learning. This article discusses the challenges and future directions of formal methods enhanced deep learning for smart cities. © 2022 ACM.
引用
收藏
页码:42 / 46
相关论文
共 50 条
  • [31] Going Deep in Medical Image Analysis: Concepts, Methods, Challenges, and Future Directions
    Altaf, Fouzia
    Islam, Syed M. S.
    Akhtar, Naveed
    Janjua, Naeem Khalid
    IEEE ACCESS, 2019, 7 : 99540 - 99572
  • [32] Between the Megalopolis and the Deep Blue Sky: Challenges of Transport with UAVs in Future Smart Cities
    Mualla, Yazan
    Najjar, Amro
    Galland, Stephane
    Nicolle, Christophe
    Tchappi, Igor Haman
    Yasar, Ansar-Ul-Haque
    Framling, Kary
    AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 1649 - 1653
  • [33] Evaluating Social Impact of Smart City Technologies and Services: Methods, Challenges, Future Directions
    Hodson, Elise
    Vainio, Teija
    Sayun, Michel Nader
    Tomitsch, Martin
    Jones, Ana
    Jalonen, Meri
    Borutecene, Ahmet
    Hasan, Md Tanvir
    Paraschivoiu, Irina
    Wolff, Annika
    Yavo-Ayalon, Sharon
    Yli-Kauhaluoma, Sari
    Young, Gareth W.
    MULTIMODAL TECHNOLOGIES AND INTERACTION, 2023, 7 (03)
  • [34] Ontologies and Machine Learning Models to Enhance Health Informatics: A Survey, Challenges and Future Directions
    Department of Computer Science, Mohamed El Bachir El Ibrahimi University, Bordj Bou Arreridj, Algeria
    不详
    不详
    IAENG Int. J. Appl. Math., 2025, 55 (03): : 475 - 499
  • [35] Survey on Learning-Based Formal Methods: Taxonomy, Applications and Possible Future Directions
    Wang, Fujun
    Cao, Zining
    Tan, Lixing
    Zong, Hui
    IEEE ACCESS, 2020, 8 : 108561 - 108578
  • [36] Video Fire Detection Methods Based on Deep Learning: Datasets, Methods, and Future Directions
    Jin, Chengtuo
    Wang, Tao
    Alhusaini, Naji
    Zhao, Shenghui
    Liu, Huilin
    Xu, Kun
    Zhang, Jin
    Chen, Tao
    FIRE-SWITZERLAND, 2023, 6 (08):
  • [37] Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
    Laith Alzubaidi
    Jinglan Zhang
    Amjad J. Humaidi
    Ayad Al-Dujaili
    Ye Duan
    Omran Al-Shamma
    J. Santamaría
    Mohammed A. Fadhel
    Muthana Al-Amidie
    Laith Farhan
    Journal of Big Data, 8
  • [38] Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
    Alzubaidi, Laith
    Zhang, Jinglan
    Humaidi, Amjad J.
    Al-Dujaili, Ayad
    Duan, Ye
    Al-Shamma, Omran
    Santamaria, J.
    Fadhel, Mohammed A.
    Al-Amidie, Muthana
    Farhan, Laith
    JOURNAL OF BIG DATA, 2021, 8 (01)
  • [39] Deep learning based infrared small object segmentation: Challenges and future directions
    Yang, Zhengeng
    Yu, Hongshan
    Zhang, Jianjun
    Tang, Qiang
    Mian, Ajmal
    INFORMATION FUSION, 2025, 118
  • [40] Breast cancer detection using deep learning techniques: challenges and future directions
    Muhammad Saad Shahid
    Azhar Imran
    Multimedia Tools and Applications, 2025, 84 (6) : 3257 - 3304