On the membership problem for finite automata over symmetric groups

被引:0
|
作者
Khashaev A.A. [1 ]
机构
[1] Lomonosov Moscow State University, Moscow
来源
Discrete Mathematics and Applications | 2022年 / 32卷 / 06期
关键词
computational complexity; finite automata; groups; permutations;
D O I
10.1515/dma-2022-0033
中图分类号
学科分类号
摘要
We consider automata in which transitions are labelled with arbitrary permutations. The language of such an automaton consists of compositions of permutations for all possible admissible computation paths. The membership problem for finite automata over symmetric groups is the following decision problem: does a given permutation belong to the language of a given automaton? We show that this problem is NP-complete. We also propose an efficient algorithm for the case of strongly connected automata. © 2022 Walter de Gruyter GmbH, Berlin/Boston.
引用
收藏
页码:389 / 395
页数:6
相关论文
共 50 条
  • [21] Analysis of the Problem of Parametric Identification of Nonlinear Automata over Finite Ring
    Skobelev, V. G.
    JOURNAL OF AUTOMATION AND INFORMATION SCIENCES, 2010, 42 (09) : 36 - 41
  • [22] Finite groups as groups of automata with no cycles with exit
    Russyev, Andriy
    ALGEBRA & DISCRETE MATHEMATICS, 2010, 9 (01): : 86 - 102
  • [23] Intuitionistic Fuzzy Finite Automata with Unique Membership Transitions
    Lakra, Telesphor
    Jordon, Jeny A.
    Priya, Jency K.
    Rajaretnam, T.
    2014 WORLD CONGRESS ON COMPUTING AND COMMUNICATION TECHNOLOGIES (WCCCT 2014), 2014, : 103 - 107
  • [24] The Equivalence Problem for Finite Automata
    Henzinger, Thomas A.
    Raskin, Jean-Francois
    COMMUNICATIONS OF THE ACM, 2015, 58 (02) : 86 - 86
  • [25] AN INTERSECTION PROBLEM FOR FINITE AUTOMATA
    SAKS, M
    STATMAN, R
    DISCRETE APPLIED MATHEMATICS, 1988, 21 (03) : 245 - 255
  • [26] A MAXMIN PROBLEM ON FINITE AUTOMATA
    CHAMPARNAUD, JM
    PIN, JE
    DISCRETE APPLIED MATHEMATICS, 1989, 23 (01) : 91 - 96
  • [27] A PROBLEM IN THEORY OF FINITE AUTOMATA
    MOSHCHEN.VA
    ENGINEERING CYBERNETICS, 1966, (01): : 65 - &
  • [28] NONUNIFORM AUTOMATA OVER GROUPS
    BARRINGTON, DAM
    STRAUBING, H
    THERIEN, D
    INFORMATION AND COMPUTATION, 1990, 89 (02) : 109 - 132
  • [29] FINITE AUTOMATA OVER A DIRECT-PRODUCT OF FREE SEMIGROUPS AND GROUPS AND LANGUAGES
    GORSHKOV, PV
    STAVROVSKII, AB
    CYBERNETICS, 1990, 26 (04): : 475 - 480
  • [30] Finite automata presentable abelian groups
    Nies, Andre
    Semukhin, Pavel
    ANNALS OF PURE AND APPLIED LOGIC, 2009, 161 (03) : 458 - 467