Relevant justification logic

被引:0
|
作者
Savić, Nenad [1 ]
Studer, Thomas [1 ]
机构
[1] Institute of Computer Science, University of Bern, Switzerland
来源
Journal of Applied Logics | 2019年 / 6卷 / 02期
关键词
Axiomatization - Justification logic - Relevant logic - Sound and complete - Soundness and completeness;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a relevant justification logic, RJ4, which is a combination of the relevant logic R and the justification logic J4. We describe the corresponding class of models, provide the axiomatization and prove that our logic is sound and complete. © 2019, College Publications. All rights reserved.
引用
收藏
页码:395 / 410
相关论文
共 50 条
  • [21] Topological semantics of Justification Logic
    Artemov, Sergei
    Nogina, Elena
    COMPUTER SCIENCE - THEORY AND APPLICATIONS, 2008, 5010 : 30 - +
  • [22] The Sharpness Property of Justification Logic
    V. N. Krupskii
    Moscow University Mathematics Bulletin, 2020, 75 : 49 - 52
  • [23] The Justification of the Basic Laws of Logic
    Gillian Russell
    Journal of Philosophical Logic, 2015, 44 : 793 - 803
  • [24] Paraconsistent Logic, Evidence, and Justification
    Melvin Fitting
    Studia Logica, 2017, 105 : 1149 - 1166
  • [25] Extrinsec justification of legal Logic
    Bohorquez Perez, Carlos Ignacio
    REVISTA CES DERECHO, 2014, 5 (01): : 40 - 56
  • [26] Conditional Obligations in Justification Logic
    Faroldi, Federico L. G.
    Rohani, Atefeh
    Studer, Thomas
    LOGIC, LANGUAGE, INFORMATION, AND COMPUTATION, WOLLIC 2023, 2023, 13923 : 178 - 193
  • [27] Tableaux and Hypersequents for Justification Logic
    Kurokawa, Hidenori
    LOGICAL FOUNDATIONS OF COMPUTER SCIENCE, 2009, 5407 : 295 - 308
  • [28] Paraconsistent Logic, Evidence, and Justification
    Fitting, Melvin
    STUDIA LOGICA, 2017, 105 (06) : 1149 - 1166
  • [29] The Justification of the Basic Laws of Logic
    Russell, Gillian
    JOURNAL OF PHILOSOPHICAL LOGIC, 2015, 44 (06) : 793 - 803
  • [30] Subset Models for Justification Logic
    Lehmann, Eveline
    Studer, Thomas
    LOGIC, LANGUAGE, INFORMATION, AND COMPUTATION (WOLLIC 2019), 2019, 11541 : 433 - 449