Applying ANN, ANFIS and LSSVM models for estimation of acid solvent solubility in supercritical CO2

被引:0
|
作者
Bemani A. [1 ]
Baghban A. [2 ]
Shamshirband S. [3 ,4 ]
Mosavi A. [5 ,6 ,7 ]
Csiba P. [7 ]
Varkonyi-Koczy A.R. [5 ,7 ]
机构
[1] Petroleum Engineering Department, Petroleum University of Technology, Ahwaz
[2] Chemical Engineering Department, Amirkabir University of Technology, Mahshahr Campus, Mahshahr
[3] Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh
[4] Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh
[5] Kalman Kando Faculty of Electrical Engineering, Obuda University, Budapest
[6] Institute of Structural Mechanics, Bauhaus University Weimar, Weimar
[7] Department of Mathematics and Informatics, J. Selye University, Komarno
来源
Computers, Materials and Continua | 2020年 / 63卷 / 03期
关键词
Acid; Adaptive neuro-fuzzy inference system (ANFIS); Artificial intelligence; Artificial neural networks (ANN); Least-squares support vector machine (LSSVM); Machine learning; Multilayer perceptron (MLP); Solubility; Supercritical carbon dioxide;
D O I
10.32604/CMC.2020.07723
中图分类号
学科分类号
摘要
In the present work, a novel machine learning computational investigation is carried out to accurately predict the solubility of different acids in supercritical carbon dioxide. Four different machine learning algorithms of radial basis function, multi-layer perceptron (MLP), artificial neural networks (ANN), least squares support vector machine (LSSVM) and adaptive neuro-fuzzy inference system (ANFIS) are used to model the solubility of different acids in carbon dioxide based on the temperature, pressure, hydrogen number, carbon number, molecular weight, and the dissociation constant of acid. To evaluate the proposed models, different graphical and statistical analyses, along with novel sensitivity analysis, are carried out. The present study proposes an efficient tool for acid solubility estimation in supercritical carbon dioxide, which can be highly beneficial for engineers and chemists to predict operational conditions in industries. © 2020 Tech Science Press. All rights reserved.
引用
收藏
页码:1175 / 1204
页数:29
相关论文
共 50 条
  • [21] Solubility of polymers and copolymers in supercritical CO2
    Rindfleisch, F
    DiNoia, TP
    McHugh, MA
    JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (38): : 15581 - 15587
  • [22] Solubility of technical oils in supercritical CO2
    Dahmen, N
    Schmieder, H
    Schon, J
    Wilde, H
    HIGH PRESSURE CHEMICAL ENGINEERING, 1996, 12 : 515 - 518
  • [23] SOLUBILITY OF SOME PESTICIDES IN SUPERCRITICAL CO2
    SCHAFER, K
    BAUMANN, W
    FRESENIUS ZEITSCHRIFT FUR ANALYTISCHE CHEMIE, 1988, 332 (02): : 122 - 124
  • [24] SOLUBILITY OF TRIETHYLENE GLYCOL IN SUPERCRITICAL CO2
    YONEMOTO, T
    CHAROENSOMBUTAMON, T
    KOBAYASHI, R
    FLUID PHASE EQUILIBRIA, 1990, 55 (1-2) : 217 - 229
  • [25] Correlation of the Solubility of Solids in Supercritical CO2
    张翔
    孟莹
    蔡建国
    邓修
    华东理工大学学报(自然科学版), 2007, (04) : 450 - 455
  • [26] A NOVEL SOLUBILITY MODEL IN A SUPERCRITICAL CO2
    Qian, Yongfang
    Li, Na
    Li, Ya
    Liu, Yanping
    THERMAL SCIENCE, 2018, 22 (04): : 1853 - 1856
  • [27] Solubility of disperse dyes in supercritical CO2
    Tušek, Lidija
    Golob, Vera
    Chemische Technik (Leipzig), 1999, 51 (02): : 79 - 83
  • [28] The solubility of organic compounds in supercritical CO2
    Alvarez, GA
    Baumann, W
    Adaime, MB
    Neitzel, F
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2005, 60 (8-9): : 641 - 648
  • [29] SOLUBILITY OF NIFEDIPINE AND NITRENDIPINE IN SUPERCRITICAL CO2
    KNEZ, Z
    SKERGET, M
    SENCARBOZIC, P
    RIZNER, A
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 1995, 40 (01): : 216 - 220
  • [30] New models for correlating and predicting the solubility of some compounds in supercritical CO2
    Wang, Wei
    Gui, Xia
    Yun, Zhi
    FLUID PHASE EQUILIBRIA, 2016, 430 : 135 - 142